

Changes to sea-surface characteristics during the middle Eocene (47.4 Ma) C21r-H6 event: evidence from calcareous nannofossil assemblages of the Gorrondatxe section (western Pyrenees)

Beñat Intxauspe-Zubiaurre¹*, Aitor Payros¹, José-Abel Flores², and Estibaliz Apellaniz¹

With 5 figures, 1 plate and 2 appendices

Abstract. The study of Eocene hyperthermal events is crucial to deciphering the potential responses of the environment to different global warming scenarios. To this end, the present study characterizes the calcareous nannofossil assemblages from the C21r-H6 (47.48 to 47.22 Ma) event of the Gorrondatxe section, thus providing new insights into the environmental impact of this carbon-cycle perturbation event on ocean surface waters. The proportion of reworked calcareous nannofossils was found to increase notably during the event, representing up to 40% of the assemblage, whereas the number of autochthonous calcareous nannofossils decreased due to dilution with terrigenous material. Autochthonous taxa were found not to show significant changes, as only the abundance of warm and oligotrophic indicators decreased slightly. Hardy taxa that inhabited epicontinental environments and were able to adapt to drastic changes in shallow water characteristics, such as salinity, peaked within the core of the event. This scenario strongly suggests that temperature was not the main factor controlling the distribution of calcareous nannofossil assemblages in the Gorrondatxe area during the core of the C21r-H6 event. The combination of a coeval decrease in $\delta^{13}C$ and an increase in clay minerals (especially kaolinite) suggests increased continental input to the ocean. Therefore, it can be assumed that terrestrial input increased as a consequence of intensified hydrologic cycle and weathering on land, also suggesting increased freshwater input into the oceans. This interpretation supports the hypothesis that increased silicate weathering leads to a reduction in atmospheric CO₂ levels.

Key words. Hyperthermal, calcareous nannofossils, continental input, reworking, Eocene

1. Introduction

The early-middle Eocene times were characterized by warm temperatures punctuated by several short-lived

(tens to hundreds of kyr) extreme warming events, commonly referred to as hyperthermals (Thomas and Zachos 2000, Zachos et al. 2001). In addition to low δ^{18} O values, the hallmarks of these hyperthermal

Authors' addresses:

 Department of Stratigraphy-Paleontology, Faculty of Science and Technology, University of the Basque Country (UPV/ EHU), P.O. Box 644, E-48080 Bilbao, Spain. benat.intxauspe@ehu.eus, a.payros@ehu.eus, estibaliz.apellaniz@ehu.eus
² Departamento de Geología, Facultad de Ciencias, Universidad de Salamanca. Plaza de los Caídos s/n, 37008 Salamanca,

Spain. flores@usal.es.

* Corresponding author: benat.intxauspe@ehu.eus

© 2017 Gebrüder Borntraeger, Stuttgart, Germany DOI: 10.1127/nos/2017/0305

www.borntraeger-cramer.de 0078-0421/2017/0305 \$ 5.75 events include negative excursions in the δ^{13} C record, suggesting that ¹³C-depleted carbon was released into the ocean-atmosphere system (Dickens et al. 1995, Zachos et al. 2004, 2008). The hyperthermal events caused severe environmental perturbations, such as increased rainfall and runoff on land, shallowing of the calcium carbonate compensation depth (CCD), and transient biological changes (Kennett and Stott 1991, Bice and Marotzke 2000, Schmitz et al. 2000, Nicolo et al. 2007, Stap et al. 2009). The recovery from these events was commonly driven by increased silicate weathering on land, which reduced the concentration of atmospheric CO₂ and caused seawater alkalinization (Jiang and Wise 2006, Agnini et al. 2009, Krishnan et al. 2014, Penman 2016).

Consequently, the Eocene hyperthermal events can be used as reference models to improve our understanding of ongoing climate change (Masson-Delmotte and Schulz, 2013). The most prominent hyperthermal event, the Paleocene-Eocene Thermal maximum (PETM) has been thoroughly studied using calcareous nannofossils (Agnini et al. 2007, Giusberti et al. 2007, Raffi and De Bernardi 2009, Gibbs et al. 2010). Conversely, much less attention has been paid to shorter hyperthermal events, such as the Eocene Thermal Maximum (ETM) 2 and ETM3, despite the fact that their characterization is crucial to deciphering the potentially variable responses of calcareous phytoplankton to different global warming scenarios (Cramer et al. 2003, Röhl et al. 2005, Lourens et al. 2005, Villa et al. 2008, Kirtland-Turner et al. 2014).

The aim of this study is therefore to redress the balance by analyzing one of the minor Eocene hyperthermal events, namely the Lutetian C21r-H6 event exposed at the Gorrondatxe section (Sexton et al. 2011, Payros et al. 2012). While previous studies carried out in Gorrondatxe have focused on physical and geochemical aspects combined with benthic foraminifera and ichnological data from seabed deposits (Payros et al. 2012), the present study aims to decipher the impact of the C21r-H6 event on calcareous nannoplankton (Coccolithophores) assemblages. In today's oceans, the abundance of Coccolithophores is largely dependent on factors such as temperature, nutrients, water stratification and pH (Wei and Wise 1990, Aubry 1992, 1998, Bralower 2002). Consequently, the environmental preferences of some calcareous nannofossil groups can be used to interpret Eocene environmental changes, including some on hyperthermal events (Monechi et al. 2000, Orue-Etxebarria et al. 2004, Tremolada and Bralower 2004, Raffi et al. 2009, Schneider et al. 2011).

2. Geological setting

The studied succession is exposed at the cliff of the Gorrondatxe beach (south-eastern coast of the Bay of Biscay, Lat. 43° 23' N Long. 3° 01' W; Fig. 1), which hosts the Global Stratotype Section and Point for the base of the Lutetian Stage (Molina et al. 2011). This section is part of a 2300-m-thick deep-marine sedimentary succession, which accumulated on a rapidly subsiding basin during early-middle Eocene times (Payros et al. 2006). Located at the bottom of a 1500 m deep gulf that opened into the Atlantic Ocean at 35° N paleolatitude (Smith 1996), the area was part of the North Iberian continental margin. Despite the location, however, according to Eocene climate and ocean circulation reconstructions (Bice and Marotzke 2000, Huber and Sloan 2000), Gorrondatxe was not in an upwelling area.

The lower Lutetian succession is composed of alternating pelagic limestones and marls interspersed with thin-bedded turbidites, which form recurrent tripartite sequences, generally 10-40 cm thick, consisting of a basal thin-bedded sandy turbidite (with divisions Ta to Td of the Bouma sequence), its capping grey clay (division Te of the Bouma sequence) and a whitish pelagic mudstone (Payros et al. 2007, 2009, Payros and Martínez-Braceras 2014). In addition, Payros et al. (2012) identified an anomalous interval (118-148 m in Fig.2) characterized by a distinctively low carbonate content and increased abundance of turbidites and kaolinite. This interval is also typified by a > 1% decline in benthic for miniferal δ^{13} C followed by a gradual recovery, a distinct deterioration in foraminiferal preservation, high proportions of warm-water planktic foraminifera and opportunistic benthic foraminifera, and reduced trace fossil and benthic foraminifera diversity. Payros et al. (2012) interpreted that these anomalous charactertistics recorded a significant paleoenvironmental perturbation, which occurred within calcareous nannofossil Zone NP14 and lasted 226 kyr (47.44–47.214 Ma). Taking everything into account, they divided the Gorrondatxe section into four distinct intervals (Fig. 2): A) pre-event succession (0-118 m); B) core of the event (118-133 m), which records peak anomaly conditions; C) initial recovery (133-148 m); and D) aftermath of the event (148-200 m), which began with a transient overcompensation phase in which the pre-perturbation carbonate content and $\delta^{13}C$ values were temporarily exceeded (148-158 m) but subsequently returned to normal environmental conditions.

Fig. 1. (A) Simplified paleogeographic and geological maps of the Gorrondatxe area, showing (paleo)location of the studied section (star). (B) General view of the Gorrondatxe section, showing reference levels and the extension of the C21r-H6 event (intervals B, C and lowermost part of D).

Fig. 2. Lithological log of the Gorrondatxe section (compiled from Payros et al. 2012), showing chronostratigraphy, precession-driven mudstone-marl couplets, variations in the percentage of turbiditic and hemipelagic sediments, and their carbonate content. The kaolinite/smectite clay mineral ratio is plotted on a two-sided, symmetric semilogarithmic graph as the percentage of deviation from an assumed content in each mineral of 50%. Stable isotope (δ^{13} C) results were obtained from both hemipelagic mudstones (whole rock) and from the benthic foraminifer *Nuttallides truempyi*. A, B, C and D correspond to the stratigraphic intervals defined by Payros et al. (2012), which were attributed to pre-C21r-H6 deposits, core of the C21r-H6 event, subsequent recovery, and aftermath of the event, respectively. The succession studied herein extends from 98 to 180 m.

Payros et al. (2012) correlated these short-term changes with the C21r-H6 event (Sexton et al. 2011), which was originally described as a hyperthermal event produced by a perturbation in the global carboncycle. The latter authors showed that in the tropical western Atlantic Ocean (ODP Site 1258) the C21r-H6 event is characterized by a 0.7% decrease in δ^{13} C and a 0.4% decrease in benthic foraminifera δ^{18} O, suggesting a 2 °C warming of bottom waters. These stable isotope changes correlate with increased carbonate dissolution at 2000-3000 m paleodepth in the South Atlantic and Pacific oceans, pointing to a global increase in deep ocean acidity and a rise of the lysocline (Sexton et al. 2011). Payros et al. (2012) added that a coeval carbonate-barren interval also occurs in the western North Atlantic Ocean (ODP Site 647, Labrador Sea; Firth et al. 2012).

3. Materials and methods

An 82 m thick section of the Gorrondatxe succession, which corresponds to the interval from 98 to 180 m in Figure 2, was sampled to study calcareous nannofossils. In order to obtain a complete record throughout the C21r-H6 event, the sampling included the uppermost 20 m of pre-event Interval A (98-118 m), Interval B (118-133 m), Interval C (133-148 m), the aftermath of the event in Interval D (148-158 m), and 24 m of the overlying succession (158–182 m). One hundred and twenty-eight samples were collected, but sampling resolution varied along the section. Thus, in most of Interval A (98-114 m) samples were collected every 80 cm. The spacing was reduced to 30 cm in the uppermost 4 m of Interval A and throughout Interval B (114-133 m). Sample spacing increased again to 80 cm in Interval C and the lowermost 14 m of Interval D (133-162 m). In the rest of the succession (162-182 m), spacing increased progressively from 1.4 m to 2 m.

Given that pelagic mudstones were too hard for the extraction of microfossils, all samples were collected at the transition from turbiditic grey marls to overlying whitish pelagic mudstones, where primary mixing and the addition of allochthonous specimens by turbidity currents are assumed to be minimal. The samples were dried in an oven and subsequently 4 mg were extracted and distributed homogeneously on a coverslip using the decantation method proposed by Flores and Sierro (1997). The coverslips were then glued to smear slides using Canada balsam.

Smear slides were analyzed under a Leica DMLP transmitted light microscope at 1250X magnification. In this study, calcareous nannofossils include all heterococcoliths, holococcoliths and nannoliths incertae sedis. Several information sources were used for the classification of the calcareous nannofossil taxa (Plate 1). The taxonomy mainly follows the concepts in the reference work "Cenozoic calcareous nannofossils" (Perch-Nielsen, 1985) and in the updated online dataset Nannotax (http://ina.tmsoc.org/Nannotax3/in dex.php?dir=Coccolithophores). A list of all the taxa identified in Gorrondatxe, alongside their stratigraphic ranges and relevant references, is available in Appendix 1.

Mesozoic and Paleocene taxa were readily classified as reworked specimens. Recognition of some Eocene reworked taxa was also straightforward, as they were extinct by Zone NP14 times (e.g., *Calciosolenia*, *Craticulithus*, *Ellipsolithus*, *Fasciculithus*, *Heliolithus*, *Hornibrookina*, *Neochiastozygus*, *Prinsius* and *Toweius*). However, the first appearances of some taxa which characterize Zone NP14 occurred earlier in the stratigraphic record, meaning that it was not possible to determine if they were autochthonous or reworked. For the purposes of this study, it was assumed that all NP14 taxa were autochthonous.

In order to characterize the calcareous nannofossil assemblages and detect rare species with biostratigraphic or paleoecological significance, around 500 specimens (autochthonous and reworked) were counted and classified on each smear slide. According to Denisson and Hay (1967), this procedure guarantees the recognition of every taxon exceeding 1% of the total assemblage. The reworked/autochthonous proportion was calculated by dividing the number of reworked specimens by the total number (autochthonous and reworked) of calcareous nannofossils (Fig. 3).

Subsequently, the number of autochthonous specimens per mm² was calculated following the method below (Fig. 3). First, the average number of autochthonous specimens on each field of view was counted and then, based on the area of the field of view and assuming that the sample had been homogeneously distributed, the figure was expressed as specimens per mm². Additionally, in order to check whether dissolution affected the composition of calcareous nannofossil assemblages, the distribution of taxa susceptible to dissolution, such as *Reticulofenestra minuta* and *Zygrhablithus bijugatus*, was analyzed (Adelseck 1973, Bralower 2002, Jiang and Wise 2006, Raffi et al. 2009).

Fig. 3. Calcareous nannofossil assemblage variations found throughout the studied section, including the stratigraphic distribution of reworked taxa in proportion to the whole assemblage, the number of autochthonous calcareous nannofossils per mm^2 and relative abundances of environmentally significant autochthonous taxa (see Appendix 2 for quantitative data). The thick black curves show 5-point running mean values and illustrate general trends. Note that scale-bars are different for each case.

Fig. 4. Stratigraphic distribution and relative abundance of selected, environmentally significant autochthonous taxa (see Appendix 2 for quantitative data). The thick black curves show 5-point running mean values and illustrate general trends. Note that scale-bars are different for each case.

For paleoceological purposes, the most common taxa, such as *Reticulofenestra dictyoda*, *Reticulofenestra minuta* and *Coccolithus* spp., were counted in one round. However, a second round was completed in order to count less common but environmentally significant taxa, such as *Discoaster*, *Sphenolithus*, *Zygrhablithus*, *Chiasmolithus*, *Ericsonia*, *Neococcolithes*, *Pontosphaera*, *Helicosphaera*, *Lanternithus*, *Braarudosphaera*, *Micrantolithus* and *Pemma*. The percentage of paleoecologically significant taxa was calculated by dividing the number count of a given taxa by the total count of autochthonous specimens (Fig. 4). Given that all genera with similar paleoecological affinities showed the same trends throughout the succession, they were grouped and represented together (Fig. 4).

4. Results

4.1 Taxonomy and paleoecological significance

One hundred and thirty six taxa were found to be present in the Gorrondatxe samples (see Appendix 1), eighty-three of which were autochthonous, while fifty-three were reworked (Plate 1). *Reticulofenestra* made up ca. 60% of the assemblage. Large specimens (more than 5 μ m), the majority of which had a narrow central area, were classified as *Reticulofenestra dictyoda* and interpreted as cosmopolitan (Okada and Honjo 1973, Honjo 1976). Small reticulofenestrids (less than 5 μ m) were attributed to *Reticulofenestra minuta*, which is generally interpreted as an r-type opportunistic taxon that blooms in upwelling zones (Hallock 1987, Flores et al. 1995). *Coccolithus* spp. is also abundant, but its paleoecological significance during the Eocene period is not clear (Aubry 1998, Bown et al. 2004).

Discoaster spp., *Sphenolithus* spp. and *Zygrhablithus bijugatus* are all considered warm and oligotrophic indicators (Garner and Bukry 1969, Prins 1971, Haq et al. 1977, Wei and Wise 1990, Aubry 1992, Bown et al. 2004). Their cumulative abundance was plotted as "warm and oligotrophic taxa" (Fig. 4).

Pontosphaera spp., Helicosphaera spp., Braarudosphaera spp., Micrantolithus spp., Pemma spp., Pseudotriquetrorhabdulus inversus and Lanternithus spp. are considered inhabitants of epicontinental areas, rather than of open oceans, and were able to adapt to conditions in which some seawater characteristics, such as salinity and continental input, changed (Haq and Lohman 1976, Wei and Wise 1990, Winter et al. 1994, Aubry 1998, Cachão et al. 2002, Khalil and Al Sawy 2014). Their cumulative abundance was represented as "near-shore taxa" (Fig.4). The rest of the species identified (Appendix 1) constituted less than 1% of the assemblage and were not considered relevant to the present study.

4.2 Stratigraphic variations in assemblages

Calcareous nannofossil preservation is generally medium to good in Gorrondatxe (Plate 1). However, some *Discoaster* and *Zygrhablithus bijugatus* specimens were found to be slightly re-crystallized. Although evidence of incipient dissolution was observed in some samples of Interval B, *Zygrhablithus bijugatus* and *Reticulofenestra minuta* are present throughout the succession (Fig. 3), showing that dissolution did not significantly modify the composition of the assemblages.

The stratigraphic distribution of the most significant taxa is shown in figures 3 and 4 (see details in Appendix 2 for quantitative data). The number of autochthonous calcareous nannofossils per mm² decreased significantly from an average value of ca. 3169 specimens/mm² in Interval A to an average of 2257 specimens/mm² in Interval B, at the core of the C21r-H6 event (118-133 m; Fig.3). The quantity increased progressively across Interval C (average of ca. 3254 specimens/mm²) and the initial 10 m of Interval D (ca. 4034 specimens/mm²), and then decreased to ca. 2664 specimens/mm². Conversely, the proportion of reworked specimens (Fig. 3) increased from 16.08% in Interval A to 20.92% in Interval B (peaking at 40% in some samples) and 19.18% in Interval C, decreasing again in Interval D (11.33%).

The proportion of the most common taxa remained relatively constant throughout the succession, but increased slightly towards the top of the section. *Reticulofenestra dictyoda* made up an average of 24.85% in Interval A, 22.97% in Interval B, 24.26% in Interval C, and 27.94% in Interval D (Fig.4). *Reticulofenestra minuta* represented 32.22% in Interval A, 34.93% in Interval B, 33.8% in Interval C and 35.31% in Interval D. *Coccolithus* spp. constituted 15.35% of the assemblage in Interval A, 15.58% in Interval B, 17.09% in Interval C and 16.35% in Interval D.

Warm and oligotrophic water taxa (represented by *Discoaster* spp., *Sphenolithus* spp. and *Zygrhablithus bijugatus*) did not vary greatly within the C21r-H6 event (Fig. 4). They represented 13.7% of the assemblage in Interval A, and slightly decreased to 11.56%

Plate 1. Microphotos of the most significant species found in the Gorrondatxe section. Scale bar 5 μm. **Autochthonous taxa:** (1) *Discoaster lodoensis.* (2) *Discoaster kuepperi.* (3) *Discoaster barbadiensis.* (4) *Discoaster deflandrei.* (5) *Sphenolithus moriformis.* (6) *Sphenolithus spiniger.* (7) *Zygrhablithus bijugatus.* (8) *Coccolithus pelagicus.* (9) *Coccolithus formosus.* (10) *Reticulofenestra dictyoda* with narrow central area. (11) *Reticulofenestra dictyoda* with wide central area. (12) *Reticulofenestra minuta* (13) *Braarudosphaera bigelowii.* (14) *Helicosphaera lophota.* (15) *Helicosphaera seminulum.* (16) *Pontosphaera pulchra.* (17) *Pontosphaera plana.* (18) *Lanternithus minutus.* (19) *Chiasmolithus solitus.* (20) *Chiasmolithus consuetus.* (21) *Blackites inflatus.* **Reworked taxa:** (22) *Toweius pertusus.* (23) *Prediscosphaera* sp. (24) *Cretarhabdus* sp. (25) *Eiffelithus* sp. (26) *Tranolithus* sp.

in Interval B, 12.03% in Interval C and 11.5% in Interval D. The average content in "near-shore" calcareous nannofossils increased slightly from 3.46% in Interval A to 4.04% in Interval B, and decreased to 2.49% in Interval C and 2.4% in Interval D. Interestingly, two significant peaks occurred within Interval B: the average value was 6.85% between 118 and 119 m (peaking at 9.37%), and 6.52% at 125-126 m (peaking at 9.27%).

Taking everything into account, the following five characteristics can be highlighted regarding the calcareous nannofossil assemblages of the C21r-H6 deposits in Gorrondatxe: i) the number of autochthonous calcareous nannofossil decreased; ii) the proportion of reworked specimens increased sharply; iii) the abundance of "near-shore" taxa showed two significant peaks; iv) the abundance of warm and oligotrophic taxa decreased slightly; v) the proportion of *Reticulofenestra dictyoda*, *Reticulofenestra minuta* and *Coccolithus* spp. taxa did not show any significant variation.

5. Discussion

5.1 Was the C21r-H6 event a hyperthermal?

Using benthic foraminiferal δ^{18} O data from the tropical western Atlantic ODP Site 1258, Sexton et al. (2011) concluded that the C21r-H6 event caused a 2 °C

warming of bottom lying waters, leading to its classification as a hyperthermal event. This paleotemperature estimation could not be confirmed with oxygen isotope data from the Gorrondatxe section, as δ^{18} O values were affected by diagenetic alteration during burial (Payros et al. 2012). Despite this limitation, on the basis of an increase in the proportion of warm-water planktonic foraminifera throughout intervals B–C and the lowermost part of Interval D, warming of the Gorrondatxe sea-surface waters was deemed to be likely. However, warming over and above natural fluctuations could not be clearly demonstrated.

Similarly, the calcareous nannofossil data presented herein does not show any evidence of rising temperatures during the C21r-H6 event. Paleoecological interpretations derived from autochthonous taxa are not straightforward due to the high number of reworked specimens. However, it is significant that the abundance of warm and oligotrophic taxa did not increase within Intervals B and C, but rather decreased slightly. This suggests that temperature was not the main factor controlling the distribution of calcareous nannofossil assemblages in the Gorrondatxe area during the C21r-H6 event.

5.2 Integrated paleoecological interpretation

The most significant characteristics of the calcareous nannofossil assemblages found in the C21r-H6 deposits of Gorrondatxe are the decrease in autochthonous calcareous nannofossils per mm², the increase in reworked taxa, and the two prominent peaks of "nearshore" taxa. These characteristics strongly suggest that seaward-directed currents transported a large volume of reworked material into the ocean, including terrigenous sediments.

The increase in terrigenous sediment supply caused both a dilution of calcareous nannofossils and a reduction in the abundance of autochthonous calcareous nannofossils. A greater terrigenous influx was in all likelihood driven by increased supply of fluvial freshwater into the ocean. Changes in salinity and density in shallow seawaters could, in fact, be responsible for the two peaks in "near-shore" taxa found in Interval B. The lowdensity shallow water masses probably did not mix with deeper saline waters, leading to seawater stratification. As an additional consequence, the abundance of warm and oligotrophic taxa, which theoretically should increase during hyperthermal events, did not show significant variations across the C21r-H6 event. Interestingly, previous data from the Gorrondatxe section demonstrated that continental input did increase during Interval B of the C21r-H6 event: trace fossil and benthic foraminifera data indicated greater input of refractory organic matter and plant detritus, whereas sedimentological data showed a greater abundance of turbidites, clays and kaolinite (Payros et al. 2012), which is commonly derived from (paleo)soils rich in iron (Chamley 1998).

The increased terrigenous sediment and freshwater input was related to the accelerated hydrological cycle, which intensified weathering and runoff on land. This scenario is similar to the models derived from other Eocene hyperthermal events (Barron et al. 1989, Schmitz and Pujalte 2003, Wing et al. 2005, Held and Soden 2006, Sluijs et al. 2009), some of which also concluded that the increased continental input boosted nutrient levels, leading to eutrophication of shallow seawaters (Bralower et al. 1995, Thompson and Schmitz 1997, McGonigal and Wise 2001, Taylor and Macquaker 2011). However, the Gorrondatxe data do not confirm seawater eutrophication, as small placoliths such as Reticulofenestra minuta, which become abundant in nutrient-rich environments, showed no significant variations. The cosmopolitan Reticulofenestra dictyoda did not show any variations either.

In conclusion, the calcareous nannofossil characteristics found at the C21r-H6 event can be attributed to the accelerated hydrological cycle on land and increased terrestrial input to the sea. Increased continental silicate weathering due to the accelerated hydrological cycle has been regarded as one of the main processes which consumes atmospheric CO₂ and drives seawater alkalinity (Jiang and Wise 2006, Agnini et al. 2009, Krishnan et al. 2014, Penman 2016). The resulting oceanic deposits are generally characterized by increased carbonate content and high $\delta^{13}C$ values (Ridgwell and Zeebe 2005, Stap et al. 2009), similar to those found in the lower part of Interval D of the Gorrondatxe section. Therefore, the combination of sedimentary, geochemical and calcareous nannofossil data from Gorrondatxe confirms the key role of continental silicate weathering in restoring pre-event environmental conditions.

5.3 Timing of the event

The sharp decrease in the abundance of autochthonous calcareous nannofossils and of warm and oligotrophic taxa at 115 m, 3 m below Interval B, suggests that some of the C21r-H6 environmental changes could

Fig. 5. Comparison of the initial subdivision of the C21r-H6 event in the Gorrondatxe section (left-hand side; Payros et al. 2012) and the updated subdivision derived from calcareous nannofossil data (right-hand side). The sea-surface perturbation began 32 kyr earlier than previously estimated (onset of Interval B) and was characterized by significant terrestrial input. Interval C represents the recovery phase, while Interval D corresponds to post-event deposits.

have started in the uppermost part of Interval A (Fig. 5). Interestingly, Payros et al. (2012) showed that the abrupt drop in δ^{13} C recorded in the lower part of Interval B was preceded by a gradual decline in the uppermost part of Interval A, along with a gradual decrease in the planktonic/benthic foraminiferal ratio, an increase in radiolarian abundance and a peak of the opportunistic benthic foraminifer Aragonia aragonensis. According to Payros et al. (2012), the uppermost 3 m of Interval A represent 1.5 precession cycles, which lasted approximately 32 kyr. In line with these observations, similar decreases in δ^{13} C and biotic perturbations also preceded the PETM, ETM2, ETM3 and H2 hyperthermal events by several 10s of kyr (Sexton et al. 2006, Nicolo et al. 2007, Stap et al. 2009, Alegret et al. 2010).

The abundance of autochthonous calcareous nannofossils, as well as that of warm and oligotrophic taxa, reached minimum values at 125 m, alongside a peak in abundance of "near-shore" taxa (Fig. 5). Payros et al. (2012) showed that the abundance of opportunistic benthic foraminifers also peaked at 125 m. Furthermore, this level corresponded to the inflexion point in the stable isotope record, showing minimum values (Fig. 2). These characteristics suggest that environmental conditions deteriorated progressively during the onset of the C21r-H6 event (115–125 m of Interval B), causing intensified warming, and accelerating the hydrological cycle and continental discharge to the sea.

The characteristics of the calcareous nannofossil assemblages gradually recovered from 125 m to 148 m

(Fig. 5). This suggests that the environmental conditions began to return to pre-event levels in the upper part of Interval B (Payros et al. 2012), and continued improving throughout Interval C. The lowermost 10 m of Interval D corresponded to a transient overcompensation phase in which pre-event carbonate content and δ^{13} C were temporarily exceeded, thus resembling the aftermath of many hyperthermal events (Ridgwell and Zeebe 2005, Stap et al. 2009). All things considered, using the age model by Payros et al. (2012) the core of the C21r-H6 hyperthermal event lasted 80 kyr (115– 125 m) and was followed by a longer recovery phase that lasted another 178 kyr (125–148 m).

6. Conclusions

Calcareous nannofossil assemblages of the Gorrondatxe area underwent significant changes during the C21r-H6 event. The abundance of autochthonous calcareous nannofossils decreased considerably during 80 kyr, whereas that of reworked specimens increased. However, the event did not cause drastic alterations in the composition of the autochthonous calcareous nannofossil assemblages. The abundance of warm and oligotrophic taxa decreased slightly and two prominent peaks of epicontinental taxa occurred. These characteristics, combined with a previously documented drop in δ^{13} C and an increase in the abundance of clay minerals, especially kaolinite, support a scenario with intensified continental input, similar to that suggested for other Eocene hyperthermal events (e.g., PETM, ETM2, H2, ETM3). It can be therefore concluded that the accelerated hydrological cycle during the C21r-H6 event led to intensified weathering and runoff on land, increased continental sediment and fresh water supply to the sea, and possibly caused stratification of the water column. These interpretations support the hypothesis that increased silicate weathering led to a progressive reduction in atmospheric CO_2 levels during the 178 kyr of the recovery phase.

Acknowledgements. This research was funded by the Spanish Government project CGL2015-65404-R (MINECO/FEDER), and by the Basque Government project IT-930-16. BI-Z received a pre-doctoral grant from the University of the Basque Country (UPV/EHU). Thanks are due to Carl Sheaver for his language corrections and to the Oceanic Geoscience Group (GGO) from Salamanca for their help in calcareous nannofossil sample preparation and analysis. Earlier versions of this work benefitted from comments by reviewer Claudia Agnini and editor Joerg Pross.

References

- Adelseck, Jr., C.G., Geehan, G.W., Roth, P.H., 1973: Experimental evidence for the selective dissolution and overgrowth of calcareous nannofossils during diagenesis. Geological Society of America Bulletin 84, 2755–2762.
- Agnini, C., Fornaciari, E., Rio, D., Tateo, F., Backman, J., Giusberti, L., 2007. Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Marine Micropaleontology 63, 19–38.
- Agnini, C., Macrì, P., Backman, J., Brinkhuis, H., Fornaciari, E., Giusberti, L., Luciani, V., Rio, D., Sluijs, A., Speranza, F., 2009. An early Eocene carbon cycle perturbation at ~52.5 Ma in the Southern Alps: Chronology and biotic response. Paleoceanography 24, 2209–2222.
- Alegret, L., Ortiz, S., 2010. El corte de Zumaya (España): Registro de los foraminíferos bentónicos del Paleógeno inferior, Revista Mexicana de Ciencias Geológicas 27(3), 477–489.
- Aubry, M. P., 1992. Late paleogene calcareous nannoplankton evolution: a tale of climatic deterioration. In: Prothero, D. R., Berggren, W. A. (Eds.), Eocene–Oligocene Climatic and Biotic Evolution. Princeton University Press, p. 272–309.
- Aubry, M.P., 1998. Early Paleogene Calcareous nannoplankton evolution: a tale of climatic amelioration. In: Aubry, M.-P., Lucas, S., Berggren, W.A. (Eds.), Late Paleocene–early Eocene Biotic and Climatic Events in the Marine and Terrestrial Records. Columbia University Press, New York, p. 158–201.

- Aubry, M. P., 2001. Provincialism in the photic zone during the LPTM. In: Ash, A. M., Wing, S. L. (Eds), Climate and Biota of the Early Paleogene, Internacional meeting, Wyoming, USA, p.6.
- Barron, E., Hay, W., Thompson, S., 1989. The hydrologic cycle: a major variable during Earth history. Palaeogeography, Palaeoclimatology, Palaeoecology 75, 157–174.
- Bice, K.L., Marotzke, J., 2000. Warrn climate dynamics. GFF 122, 29–30.
- Bown, P.R., Lees, J.A., Young, J.R., 2004. Calcareous nannoplankton evolution and biodiversity through time. In: Thierstein, H.R., Young, J.R. (Eds.), Coccolithophores: from molecular processes to global impact. Springer, New York, p.481–508.
- Bralower, T. J., Zachos, J. C., Thomas, E., Parrow, M., Paull, C. K., Kelly, D. C., Premoli Silva, I., Sliter, W. V., Lohmann, K. C., 1995. Late Paleocene to Eocene paleoceanography of the ecuatorial pacific ocean: Stables isotopes recorded at ODP Site 865, Allison Guyot. <u>Paleoceanogra-</u> phy 10, 841–865.
- Bralower, T. J., 2002: Evidence of surface water oligotrophy during the Paleocene–Eocene Termal Maximum: Nannofossil assemblage data from ocean drilling program Site 690, Maud Rise, Weddell Sea. Paleoceanography 17(2), 1029–1042.
- Cachão, M., Drago, T., Silva, A.D., Moita, T., Oliveira, A., Naughton, F., 2002. The secret (estuarine?) life of *Helicosphaera carteri*: Preliminary results. Journal of Nannoplankton Research 24, 76–77.
- Chamley, H., 1998. Clay mineral sedimentation in the Ocean. In: Paquet, H., Clauer, N. (Eds.), Soil and sediments (mineralogy and geochemistry). Springer-Verlag, Berlin, p.269–302. ODP Proceedings 108. Ocean Drill Program, College Station, Texas, p.121–141.
- Cramer, B. S., Wright, J. D., Kent, D. V., Aubry, M. P., 2003. Orbital climate forcing of δ^{13} C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18 (4), 1097–1117.
- Dedert, M., Stoll, H. M., Kroon, D., Shimizu, N., Kanamaru, K., Ziveri, P., 2012. Productivity response of calcareous nannoplankton to Eocene Thermal Maximum 2 (ETM2). Climate of the Past 8, 977–993.
- Dennison, J.M., Hay, W.W., 1967. Estimating the needed sampling area for subaquatic ecologic studies. Journal Paleontology 41, 706–708.
- Dickens, G. R., O'Neil, J. R., Rea, D. K., Owen, R. M., 1995. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971.
- Firth, J. V., Eldrett, J. S., Harding, T. C., Coxall, H. K., Wade, B.S., 2012: Palaeoceanographic events from high to low latitudes of ODP Hole 647A: implications for correlating Integrated biomagnetochronology for the Palaeogene. Geological Society, London, Special Publications, Vol. 373.
- Flores, J.A., Sierro, F.J., Raffi, I., 1995. Evolution of the calcareous nannofossil assemblage as a response to the paleoceanographic changes in the eastern equatorial Pacific Ocean from 4 to 2 Ma, Leg 138, sites 849 and 852.

In: Pisias, N. G., Mayer, L. A., Janecek, T. R., Palmer-Julson, A., van Andel, T. H. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results 138. College Station, Texas, p. 163–176.

- Flores, J. A., Sierro, F. J., 1997. Revised technique for calculation of calcareous nannofossil accumulation rates. Micropaleontology 43, 321–324.
- Fuertes, M.A., Flores, J.A., Sierro, F.J., 2014: The use of circularly polarized light for biometry, identification and estimation of mass of coccoliths. Marine Micropaleontology, 113, 44–55.
- Gartner Jr., S., Bukry, D., 1969. Tertiary holococcolith. Journal of Paleontology 43, 1213–1220.
- Gibbs, S.J., Bralower, T.J., Bown, P.R., Zachos, J.C., Bybell, L.M., 2006. Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene–Eocene thermal maximum: implications for global productivity gradients. Geology 34 (4), 233–236.
- Gibbs, S.J., Stoll, H.M., Bown, P.R., Bralower, T.J., 2010: Ocean acidification and surface water carbonate production across the Paleocene–Eocene thermal maximum. Earth and Planetary Science Letters 295, 583–592.
- Giusberti, L., Rio, D., Agnini, C., Backman, J., Fornaciari, E., Tateo, F., Oddone, M., 2007. Mode and tempo of the Paleocene–Eocene thermal maximum in an expanded section from the Venetian pre-Alps. Geological Society of America Bulletin 119 (3–4), 391–412.
- Hallock, P., 1987. Fluctuations in the trophic resource continuum: a factor in global diversity cycles? Paleoceanography 2 (5), 457–471.
- Haq, B.U., Lohmann, G.P., 1976. Early Cenozoic calcareous nannoplankton biogeography of the Atlantic Ocean. Marine Micropaleontology 1, 119–194.
- Haq, B. U., Premoli Silva, I., Lohmann, G. P., 1977. Calcareous plankton paleobiogeographic evidence for major climatic fluctuations in the Early Cenozoic Atlantic Ocean. Journarl of Geophysical Results 82, 3861–3876.
- Held, I. M., Soden, B. J., 2006. Robust responses of the hydrological cycle to global warming. Journal Climate 19, 5686–5699.
- Honjo, S., 1976. Coccoliths production, transportation and sedimentation. Marine Micropaleontology 1, 65–79.
- Huber, M., Sloan, L. C., 2000. Climatic responses to tropical sea surface temperature changes on a "greenhouse" Earth. Paleoceanography 15, 443–450.
- Jiang, S., Wise Jr., S. W., 2006. Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene/Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B. Revue de micropaléontologie 49, 227–244.
- Kennett, J.P., Stott, L.D., 1991. Abrupt deep-sea warming, paleoceanographic changes and benthic extinctions. <u>Na-</u> ture 353, 225–229.
- Khalil, H., Al Sawy, S., 2014. Integrated biostratigraphy, stage boundaries and Paleoclimatology of the Upper Cretaceous–Lower Eocene successions in Kharga and Dakhala Oases, Western Desert, Egypt. Journal of African Earth Sciences 96, 220–242.

- Kirtland Turner, S., Sexton, P.F., Charles, C.D., Norris, R.D., 2014. Persistence of carbon release events through the peak of early Eocene global warmth. Nature Geoscience 7, 748–751.
- Krishnan, S., Pagani, M., Huber, M., Sluijs, A., 2014. High latitude hydrological changes during the Eocene Thermal Maximum 2. Earth and Planetary Science Letters 404, 167–177.
- Lourens, J.L., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U., Bowles, J., Raffi, I., 2005. Astronomical pacing of late Paleocene to early Eocene global warming events. Nature 435, 1083–1087.
- Masson-Delmotte, V., Schulz, M., 2013. Information from paleclimate archives. In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Chapter 5.
- McGonigal, K.L., Wise, S.W. Jr., 2001. Eocene calcareous nannofossil biostratigraphy and sediment accumulation of turbidite sequences on the Iberia Abyssal Plain, ODP Sites 1067–1069. In: Beslier, M.O., Whitmarsh, R.B., Wallace, P.J., Girardeau, J. (Eds.), Proceedings ODP, Scientific Results 173, p. 1–35.
- Molina, E., Alegret, L., Apellaniz, E., Bernaola, G., Caballero, F., Dinarès-Turell, Hardenbol, J., Heilmann-Clausen, C., Larrasoaña, J.C., Luterbacher, H., Monechi, S., Ortiz, S., Orue-Etxebarria, X., Payros, A., Pujalte, V., Rodríguez-Tovar, F.J., Toris, F., Tosquella, J., Uchman, A., 2011. The Global Stratotype Section and Point (GSSP) for the base of the Lutetian Stage at the Gorrondatxe section, Spain. Episodes 34 (2), 86–108.
- Monechi, S., Angori, E., Von Salis, K., 2000. Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). <u>Bulletin de la Société Géologique de France 171(4)</u>, 477–489.
- Nicolo, M.J., Dickens, G.R., Hollis, C.J., Zachos, J.C., 2007. Multiple early Eocene hyperthermals: their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35 (8), 699–702.
- Okada, H., Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Results 20, 355– 374.
- Orue-Etxebarria, B., Bernaola, G., Baceta, J. I., Angori, E., Caballero, F., Monechi, S., Pujalte, V., Dinarès-Turell, J., Apellaniz, E., Payros, A., 2004. New constraints on the evolution of planktic foraminifers and calcareous nannofossils across the Paleocene–Eocene boundary interval: the Zumaia section revisited. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 234, 223–259.
- Payros, A., Orue-Etxebarria, X., Pujalte, V., 2006. Covarying sedimentary and biotic fluctuations in Lower–Middle Eocene Pyrenean deep-sea deposits: Palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 258–276.

- Payros, A., Bernaola, G., Orue-Etxebarria, X., Dinarès-Turell, J., Tosquella, J., Apellaniz. E., 2007. Reassessment of the Early–Middle Eocene biomagnetochronology based on evidence from the Gorrondatxe section (Basque Country, western Pyrenees). Lethaia 40, 183–195.
- Payros, A., Tosquella, J., Bernaola, G., Dinarès-Turell, J., Orue-Etxebarria, X., Pujalte, V., 2009. Filling the North European Early/Middle Eocene (Ypresian/Lutetian) boundary gap: Insights from the Pyrenean continental to deep-marine record. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 313–332.
- Payros, A., Ortiz, S., Alegret, L., Orue-Etxebarria, X., Apellaniz, E., Molina, E., 2012. An early Lutetian carbon-cycle perturbations: Insights from the Gorrondatxe section (western Pyrenees, Bay of Biscay). Paleoceanography 27, 2213–2226.
- Payros, A., Martínez-Braceras, N., 2014. Orbital forcing in turbidite accumulation during the Eocene greenhouse interval. Sedimentology 61, 1411–1432.
- Penman, D. E., 2016: Silicate weathering and North Atlantic silica burial during the Paleocene–Eocene Thermal Maximum. Geology Vol. 44 (9), 731–734.
- Penman, D. E., Kirtland-Turner, S., Sexton, P.F. et al., 2016: An abyssal carbonate compensation depth overshoot in the aftermath of the Paleocene–Eocene Thermal Maximum. Nature Geoscience Vol.9 (8), p.575.
- Perch-Nielsen, K., 1985. Cenozoic calcareous nannofossils. In: Bolli, H. M., Saunders, J. B., Perch-Nielsen, K. (Eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, p. 427–554.
- Prins B., 1971. Speculations on relations, evolution, and stratigraphic distribution of discoasters. In: Farinacci, A. (Ed.), Proceedings of the II Planktonic Conference, Editoriale Tecnoscienza, Roma, p. 1017–1037.
- Raffi, I., De Bernardi, B., 2008. Response of calcareous nannofossils to the Paleocene–Eocene Thermal Maximum: observations on composition, preservation and calcification in sediments from ODP Site 1263 (Walvis Ridge – SW Atlantic). Marine Micropaleontology 69, 119–138.
- Raffi, I., Backman, J., Zachos, J.C., Sluijs, A., 2009. The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Marine Micropaleontology 70, 201–212.
- Röhl, U., Westerhold, T., Monechi, S., Thomas, E., Zachos, J. C., Donner, B., 2005. The Third and Final Early Eocene Thermal Maximum: Characteristics, Timing and Mechanisms of the 'X' Event, GSA Annual Meeting 37. Geological Society of America, Salt Lake City, USA. 264 p.
- Schmitz, B., Pujalte, V., Nuñez-Betelu, K., 2000. Climate and sea level perturbations during the Initial Eocene Thermal Maximum: evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology 165, 299–320.
- Schmitz, B., Pujalte, V., 2003. Sea-level, humidity, and landerosion records across the initial Eocene thermal maxi-

mum from a continental-marine transect in northern Spain. Geology 31 (8), 689–692.

- Schneider, L.J., Bralower, T.J., Kump, L.R., 2011. Response of nannoplankton to early Eocene ocean destratification. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 152–162.
- Self-Trail, J.M., Powars, D.S., Watkins, D.K., Wandless, G.A., 2012. Calcareous nannofossil assemblage changes across the Paleocene–Eocene Thermal Maximum: Evidence from a shelf setting. Micropaleontology 92–93, 61–80.
- Sexton, P.F., Wilson, P.A., Norris, R.D., 2006. Testing the Cenozoic multisite composite δ^{18} O and δ^{13} C curves: new monospecific Eocene records from a single locality, Demerara Rise (Ocean Drilling Program Leg 207). Paleoceanography 21, 2019–2035.
- Sexton, P.F., Norris, R.D., Wilson, P.A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C.T., Gibbs, S., 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon. Nature 471, 349–352.
- Sluijs, A., Schouten, S., Donders, T.H., Schoon, P.L., Röhl, U., Reichart, G.J., Sangiorgi, F., Kim, J.-H., Sinninghe Damsté, J.S., Brinkhuis, H., 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geoscience 2, 777–780.
- Smith, A.G., 1996. Cenozoic latitudes, positions and topography of the Iberian Peninsula. In: Friend, P.F., Dabrio, C.J. (Eds.), Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, p.6–8.
- Stap, L., Sluijs, A., Thomas, E., Lourens, L., 2009. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, South-Eastern Atlantic Ocean. Paleoceanography 24, 1211–1223.
- Taylor, K.G., Macquaker, J.H.S., 2011. Iron minerals in marine sediments record chemical environments. Elements 7, 113–118.
- Thomas, E., Zachos, J. C., 2000. Was the late Paleocene Thermal Maximum a unique event? GFF 122 (1), 169–170.
- Thompson, E., Schmitz, E., 1997. Barium and the late Paleocene δ^{13} C maximum: Evidence of increased marine surface productivity. Paleoceanography 12, 239–254.
- Tremolada, F., Bralower, T.J., 2004. Nannofossil assemblage fluctuations during the Paleocene–Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): palaeoceanographic implications. Marine Micropaleontology 52, 107–116.
- Villa, G., Fioroni, C., Pea, L., Bohaty, S., Persico, D, 2008. Middle Eocene–late Oligocene climate variability: Calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology 69, 173–192.
- Wei, W., Wise, S. W., 1990. Biogeographic gradients of middle Eocene–Oligocene calcareous nannoplankton in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 79, 29–61.
- Wing, S.L., Harrington, G.J., Smith, F.A., Bloch, J.I., Boyer, D.M., Freeman, K.H., 2005. Transient floral change

and rapid global warming at the Paleocene–Eocene boundary. Science 310, 993–996.

- Winter, A., Jordon, R. W., Roth, P.H., 1994. Biogeography of living coccolithophores in ocean waters. In: Winter, A., Siesser, W.G. (Eds.), Coccolithophores. Cambridge University Press, Cambridge, p. 161–177.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science 292, 686–693.
- Zachos, J.C., Kroon, D., and 25 others, 2004. Early Cenozoic extreme climates: The Walvis Ridge transect: Proceedings of the Ocean Drilling Program, Leg 208.
- Zachos, J., Dickens, G. R., Zeebe, R.E, 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–293.

Manuscript received: December 14, 2015 Revised version accepted: December 5, 2016

Appendix 1

Taxonomic list of the taxa present in Gorrondatxe. For each autochthonous taxon (alphabetically ordered) we add: (i) the reference of the author that described it. (ii) The temporal constraint of the taxon, in which we have based the hypothesis that the taxon is autochthonous. (iii) Reference of the author who published such temporal constraint. For each reworked taxon (alphabetically ordered) we do not add points (ii) and (iii) due to their clearly reworked status.

AUTOCHTHONOUS TAXA

TAXON	CITATION	STRATIGRAPHIC RANGE	SOURCE OF STRAT. RANGE
Blackites	Hay and Towe 1962		
Blackites gladius	(Locker 1967) Varol 1989	NP14 (49.11 Ma) – NP15 (42.8 Ma)	Bown 2005, Perch-Nielsen 1985
Blackites inflatus	(Bramlette and Sullivan 1961) Kapellos and	NP14b (47.84 Ma) – NP15a (45.49 Ma)	Perch-Nielsen 1985
,	Schaub 1973		
Blackites perlongus	(Deflandre 1952) Shafik 1981	NP9 (57.21 Ma) – NP21 (32.92 Ma)	Bown 2005
Blackites spinosus	(Deflandre in Deflandre and Fert 1954) Hay	NP14b (47.84 Ma) – NP23 (29.62 Ma)	Bown 2005
	and Towe 1962		
Braarudosphaera	Deflandre 1947		
Braarudosphaera bigelowii	(Gran and Braarud 1935) Deflandre 1947	Cenomanian (100.5 Ma) – Extant	Burnett 1998, Young et al. 2003
Brarudosphaera perampla	Bown 2010	NP6 (59.54 Ma) – NP23 (29.62 Ma)	Bown 2010
Braarudosphaera seauela	Self-Trail 2011	NP6 $(59.54 \text{ Ma}) - \text{NP23} (29.62 \text{ Ma})$	Nannotax rough estimate
Calcidiscus	Kamptner 1950		Ũ
Calcidiscus bicircus	Bown 2005	NP12 (53.7 Ma) – NP17 (37.32 Ma)	Shamrock & Watkins 2008.
			Bown et al. 2007
Calcidiscus pacificanus	(Bukry 1971) Varol 1989	NP10 (55.85 Ma) – NP17 (37.32 Ma)	Shamrock & Watkins 2008
Camplosphaera	Kamptner 1963		
Campylosphaera dela	(Bramlette & Sullivan, 1961) Hay & Mohler, 1967	NP6 (59.54 Ma) - NP17 (37.32 Ma)	Nannotax rough estimate
Chiasmolithus	Hay et al. 1966		Ũ
Chiasmolithus consuetus	(Bramlette and Sullivan 1961) Hay and Mohler 1967	NP5 (61.51 Ma) - NP16 (40.4 Ma)	Perch-Nielsen 1985
Chiasmolithus grandis	(Bramlette and Riedel 1954) Radomski 1968	NP11 (54.17 Ma) – NP 17 (37.32 Ma)	Perch-Nielsen 1985
Chiasmolithus nitidus	Perch-Nielsen 1971	NP6 (59.54 Ma) – NP21 (32.92 Ma)	Nannotax rough estimate
Chiasmolithus solitus	(Bramlette and Sullivan 1961) Locker 1968	NP9 (57.21 Ma) – NP16 (40.4 Ma)	Perch-Nielsen 1985
Clathrolithus	Deflandre in Deflandre and Fert 1954		
Clathrolithus ellipticus	Deflandre in Deflandre and Fert 1954	NP6 (59.54 Ma) - NP16 (40.4 Ma)	Nannotax rough estimate
Clausicoccus	Prins 1979		
Clausicoccus fenestratus	(Deflandre and Fert 1954) Prins 1979	NP12 (53.7 Ma) - NN1 (22.82 Ma)	Self-Trail via comment, Young 1998
Clausicoccus subdistichus	(Roth and Hay in Hay et al. 1967) Prins 1979	NP14 (49.11 Ma) $-$ NN2 (18.28 Ma)	Nannotax rough estimate
Coccolithus	Schwartz 1894		
Coccolithus biparteoperculatus	(Varol 1991) Bown and Dunkley Jones 2012	NP12 (53.7 Ma) - NP23 (29.62 Ma)	Varol 1991
Coccolithus cachaoi	Bown 2005	NP14 (49.11 Ma) – $NP21$ (32.92 Ma)	Bown, 2005
Coccolithus eopelagicus	(Bramlette and Riedel 1954) Bramlette and	NP14 (49.11 Ma) - NP23 (29.62 Ma)	Nannotax rough estimate
1 0	Sullivan 1961		
Coccolithus formosus	(Kamptner 1963) Wise 1973	NP12 (53.7 Ma) – NP21 (32.92 Ma)	Perch-Nielsen 1985
Coccolithus mutatus	(Perch-Nielsen 1971) Bown 2005	NP15 (49.11 Ma) – NP15 (42.87 Ma)	Nannotax rough estimate
Coccolithus pauxillus	Bown 2010	NP9 $(57.21) - NP15 (42.87)$	Bown, 2005
Coccolithus pelagicus	(Wallich 1877) Schiller 1930	Lower NP2 – Extant	Varol 1989, Young et al. 2003
Coccolithus staurion	Bramlette and Sullivan 1961	NP9 (57.21) - NP15 (42.87)	Perch-Nielsen 1985
Cruciplacolithus	Hay and Mohler in Hay et al. 1967	Danian (66.04 Ma) – Extant	Nannotax rough estimate
Cvclicargolithus	Bukry 1971	NP9 $(57.21 \text{ Ma}) - \text{NN6} (12.1 \text{ Ma})$	Shamrock & Watkins 2008, Raffi et al.
			2006
Daktylethra	Gartner in Gartner and Bukry 1969	NP14b (47.82 Ma) – NP17 (37.32 Ma)	Bown & Dunkley Jones 2006
Discoaster	Tan 1927		
Discoaster barbadiensis	Tan 1927	NP11 (54.17 Ma) - NP20 (34.44 Ma)	Nannotax rough estimate
Discoaster deflandrei	Bramlette and Riedel 1954	NP13 (50.5 Ma) – NN7 (10.89 Ma)	Theodoridis 1984, Young 1998
Discoaster kuepperi	Stradner 1959	NP11 (54.17 Ma) – NP14 (46.29 Ma)	Nannotax rough estimate
Discoaster lodoensis	Bramlette and Sullivan 1961	NP12 (53.7 Ma) – NP14 (46.29 Ma)	Perch-Nielsen 1985, Nannotax rough
			estimate
Discoaster nodifer	(Bramlette and Riedel 1954) Bukry 1973	NP14 (49.11 Ma) - NP23 (29.62 Ma)	Nannotax rough estimate
Discoaster saipanensis	Bramlette and Riedel 1954	NP14 (49.11 Ma) – NP20 (34.44 Ma)	Perch-Nielsen 1985
Discoaster sublodoensis	Bramlette and Sullivan 1961	NP14 (49.11 Ma) – NP15 (42.87 Ma)	Perch-Nielsen 1985
Discoaster wemmelensis	Achuthan and Stradner 1969	NP14 (49.11 Ma) – NP16 (40.4 Ma)	Nannotax rough estimate
Ericsonia	Black (1964)		
Ericsonia robusta	(Bramlette and Sullivan 1961) Edwards and Perch-	NP4 (63.25 Ma) - NP19 (34.44 Ma)	Bown & Dunkley Jones 2012
	Nielsen 1975		
Helicosphaera	Kamptner 1954		
Helicosphaera lophota	(Bramlette and Sullivan 1961) Locker 1973	NP12 (53.7 Ma) - NP18 (36.87 Ma)	Perch-Nielsen 1985
Helicosphaera seminulum	Bramlette and Sullivan 1961	NP12 (53.7 Ma) - NP16 (40.4 Ma)	Perch-Nielsen 1985
Holodiscolithus	Roth 1970		
Holodiscolithus geisenii	Bown 2005	NP9 (57.21 Ma) - NP23 (29.62 Ma)	Bown & Dunkley Jones 2006

TAXON	CITATION	STRATIGRAPHIC RANGE	SOURCE OF STRAT. RANGE
Holodiscolithus macroporus	(Deflandre in Deflandre and Fert 1954) Roth 1970	NP9 (57 21 Ma) - NN20 (0 29 Ma)	Dunkley Iones et al. 2009
Holodiscolithus solidus	(Deflandre in Deflandre and Fert 1954) Roth 1970	NP4 (63.25 Ma) = NP23 (29.62 Ma)	Dunkley Jones et al. 2009
Lanternithus	Stradner 1962	1114 (05.25 Mill) 111 25 (29.02 Mill)	Dunkley Jones et al. 2007
Lanternithus minutus	Stradner 1962	NP14b (47.82 Ma) – NP23 (29.62 Ma)	Bown 2005
Lanternithus simplex	Bown 2005	NP6 (59.54 Ma) - NP15a (45.49 Ma)	Bown 2005
Lophodolithus	Deflandre in Deflandre and Fert 1954	Selandian (61.61 Ma) – Bartonian	Perch-Nielsen 1985
		(37.32 Ma)	
Markalius	Bramlette and Martini 1964		
Markalius apertus	Perch-Nielsen 1979	NP1 (66.04 Ma) - NP16 (40.4 Ma)	Neptune records, Self-Trail 2011
Markalius inversus	(Deflandre in Deflandre and Fert 1954) Bramlette	Campanian (83.64 Ma) - NP21	Burnett 1998, Neptune records
	and Martini 1964	(32.92 Ma)	
Micrantholithus	(Deflandre in Deflandre and Fert 1954)		
Micrantholithus astrum	Bown 2005	NP5 (61.51 Ma) - NP21 (32.92 Ma)	Nannotax rough estimate
Micrantholithus flos	(Deflandre in Deflandre and Fert 1954)	NP6 (59.54 Ma) - NP23 (29.62 Ma)	Bown 2005
Micrantholithus hebecupsis	Bown 2005	NP11 (54.17 Ma) - NP21 (32.92 Ma)	Bown 2005, Dunkley Jones et al. 2009
Nannotetrina	Achuthan and Stradner 1969		
Nannotetrina cristata	(Martini 1958) Perch-Nielsen 1971	NP14b (47.82 Ma) - NP16 (40.4 Ma)	Perch-Nielsen 1985
Neococcolithes	Sujkowski 1931		
Neococcolithes dubius	(Deflandre in Deflandre and Fert 1954) Black 1967	NP11 (54.17 Ma) – NP18 (36.97 Ma)	Shamrock & Watkins 2008, Perch- Nielsen 1985
Neococcolithes minutus	(Perch-Nielsen 1967) Perch-Nielsen 1971	NP14 (49.11 Ma) - NP20 (34.44 Ma)	Perch-Nielsen 1985
Neococcolithes nudus	Perch-Nielsen 1971	NP14 (49.11 Ma) - NP16 (40.4 Ma)	Perch-Nielsen 1985
Neococcolithes protenus	(Bramlette and Sullivan 1961) Black 1967	NP4 (63.25 Ma) - NP14 (46.29 Ma)	Perch-Nielsen 1985
Pemma	Klumpp 1953	NP14b (47.82 Ma) - NP21 (32.92 Ma)	Dunkley Jones et al. 2009
Pontosphaera	Lohmann 1902		
Pontosphaera duocava	(Bramlette and Sullivan 1961) Romein 1979	NP11 (54.17 Ma) - NP17 (37.32 Ma)	Nannotax rough estimate
Pontosphaera exilis	(Bramlette and Sullivan 1961) Romein 1979	NP9 (57.21 Ma) - NP17 (37.32 Ma)	Bown 2005
Pontosphaera formosa	(Bukry and Bramlette 1969) Romein 1979	NP14 (49.11 Ma) - NP21 (32.92 Ma)	Nannotax rough estimate
Pontosphaera multipora	(Kamptner 1948 ex Deflandre in Deflandre and Fer 1954) Roth 1970	Eocene (55.96 Ma) – Extant	Young et al. 2003
Pontosphaera pectinata	(Bramlette and Sullivan 1961) Sherwood 1974	NP14 (49.11 Ma) - NP17 (37.32 Ma)	Bown 2005
Pontosphaera plana	(Bramlette and Sullivan 1961) Haq 1971	NP9 (57.21 Ma) - NP23 (29.62 Ma)	Bown 2005
Pontosphaera pulcheroides	(Sullivan 1964) Romein 1979	NP12 (53.7 Ma) - NP16 (40.4 Ma)	Self-Trail 2011
Pontosphaera pulchra	(Deflandre in Deflandre and Fert 1954) Romein 1979	NP9 (57.21 Ma) - NP16 (40.4 Ma)	Self-Trail 2011
Pontosphaera pygmaea	(Locker 1967) Bystricka and Lehotayova 1974	NP12 (53.21 Ma) – Oligocene	Self-Trail 2011
N 1		(23.02 Ma)	
Pseudotriquetror-habdulus	Wise in Wise and Constans 1976		N
Pseudotriquetror-habdulus inversus	(Bukry and Bramlette 1969) Wise in Wise and	NP14b (47.82 Ma) – NP16 (40.4 Ma)	Nannotax rough estimate
DI I I I	Constans 1976		D 2005
Rhabaosphaera Batianlafan atur	Haeckel 1894	NP14 (49.11 Ma) – Extant	Bown 2005
Reticulojenestra	Hay et al. 1966	ND12 (50 50 Ma) Olises	Deach Mislage 1095
Kenculojenestra alciyoda	Defiandre in Defiandre and Fert 1934	(23.03) (50.50 Ma) – Oligocene	Perch-Meisen 1985
Patioulafon astra minuta	Both 1070	(23.03) ND13 zona (50.50 Ma) – Diagona	Young 1009
Kenculojenestra minula	Kotii 1970	(2.50 Ma) = Filocene	10ulig 1998
Sphenolithus	Deflandra in Grassa, 1952	(2.5) Wia)	
Sphenolithus marifarmis	(Bronnimann and Stradner 1960) Bramlette and	Selandian (61 61 Ma) - NN10 (8 29 Ma	Agnini et al. 2007. Young 1998
Sphenounus morijornus	Wilcoxon 1967	Selandian (01.01 Ma) = 101010 (0.2) Ma	Aginin et al. 2007, Toung 1996
Sphenolithus orphanknollensis	Perch-Nielsen 1971	NP11 (54 1 Ma) - NP15 (42 87 Ma)	Agnini et al. 2007. Perch-Nielsen 1985
Sphenolithus radians	Defandre in Grasse 1952	NP11 (54.2 Ma) $=$ NP23 (29.62 Ma)	Agnini et al. 2007, Feren Preisen 1965
Spricho linitao Faaranto	Defaulte in Grasse 1762	11111 (01121114) 11120 (2)1021144)	Jones 2012
Sphenolithus spiniger	Bukry 1971	NP14 (49.11 Ma) - NP17 (37.32 Ma)	Perch-Nielsen 1985, Fornaciari et al.
			2010
Toweius	Hay and Mohler 1967		B
Toweius gammation	Romein 1979	NP11 zone (54.17 Ma) – NP 14 zone	Perch-Nielsen 1985
<i>T</i> · · ·	(D. L. 1071) D	(46.29)	D I N. I 1005
<i>Ioweius magnicrassus</i>	(Bukry 19/1) Romein 19/9	NP11 zone (54.17 Ma) – NP 14 zone (46.29)	Perch-Nielsen 1985
Umbilicosphaera	Lohmann 1902		
Umbilicosphaera bramlettei	(Hay and Towe 1962) Bown et al. 2007	NP6 (59.54 Ma) - NP21 (32.92 Ma)	Bown et al. 2007
Umbilicosphaera jordanii	Bown 2005	NP4 (63.25 Ma) - NP23 (29.62 Ma)	Bown et al. 2007
Umbilicosphaera protoannulus	(Gartner 1971) Young and Bown 2014	NP11 (54.17 Ma) - NP21 (32.92 Ma)	Bown et al. 2007
Zygrhablithus	Deflandre 1959		
Zygrhablithus bijugatus	(Deflandre in Deflandre and Fert 1954) Deflandre	NP9 (57.21 Ma) - NN1 (22.82 Ma)	Agnini et al. 2007, Young 1998
	1959		

CENOZOIC REWORKED TAXA

TAXON	CITATION
Calciosolenia	Kamptner 1927
Craticulithus	Bown 2010
Discoaster	Tan 1927
Discoaster multiradiatus	Bramlette and Riedel 1954
Ellipsolithus	Sullivan 1964
Fasciculithus	Bramlette and Sullivan 1961
Heliolithus	Bramlette and Sullivan 1961
Hornibrookina	Edwards 1973
Neochiastozygus	Perch-Nielsen 1971
Prinsius	Hay and Mohler 1967
Toweius	Hay and Mohler 1967
Toweius callosus	Perch-Nielsen 1971
Toweius pertusus	(Sullivan 1965) Romein 1979
Tribrachiatus	Shamrai 1963
Zygodiscus	Bramlette and Sullivan 1961

MESOZOIC REWORKED TAXA

TAXON	CITATION
Ahmuellerella	Reinhardt 1964
Amphizygus	Bukry 1969
Arkhangelskiella	Bekshina 1959
Braloweria	Crux 1991
Broisonia	Bukry 1969
Bukrylithus	Black 1971
Calculites	Prins and Sissingh in Sissingh 1977
Chiastozygus	Gartner 1968
Crepidolithus	Noël 1965
Cretarhabdus	Bramlette and Martini 1964
Cribrosphaerella	Deflandre in Piveteau 1952
Diadorhombus	Worsley 1971
Eiffelithus	Reinhardt 1965
Eprolithus	Stover 1966
Gorkaea	Varol and Girgis 1994
Helicolithus	Noël 1970
Heteromarginatus	Bukry 1969
Jakubowskia	Varol 1989
Liliasterites	Stradner and Steinmetz 1984
Loxolithus	Noël 1965
Manivitella	Thierstein 1971
Microrhabdulus	Deflandre 1959
Micula	Vekshina 1959
Munarinus	Risatti 1973
Neocrepidolithus	Romein 1979
Octolithus	Romein 1979
Placozygus	Hoffman 1970
Prediscosphaera	Vekshina 1959
Quadrum	Prins and Perch-Nielsen in Manivit et al. 1977
Radiolithus	Stover 1966
Reinhardtites	Perch-Nielsen 1968
Retecapsa	Black 1971
Rhagodiscus	Reinhardt 1967
Russellia	Risatti 1973
Tranolithus	Stover 1966
Tubirhabdus	Rood et al. 1973
Watznaueria	Reinhardt 1964
Zeugrhabdotus	Reinhardt 1965

Appendix 2

Abundance (raw values and percentage) of all calcareous nannofossil groups presented in the figures. Raw values were obtained by counting at least 500 specimens per smear slide. The total quantity of specimens counted per smear slide can be found in the last part of the table. Proportions were calculated by dividing the raw value of each autochthonous genus with the total amount of autochthonous specimens. Proportions of reworked specimens were calculated by dividing the raw value with the total amount of specimens (autochthonous + reworked). Grey background highlights samples collected within the C21r-H6 event interval.

				REWORKED SPECIMENS		MESOZOIC REWORKED		CENOZOIC REWORKED	
SAMPLE	Stratigraphic position (m)	Autochthonous specimens per mm ²	Raw value	Percentage per total amount of specimens	Raw value	% total specimens	Raw value	% total specimens	Total counted specimens in first round
GO-LU-156	179.2	1424	54	10.51	35	6.81	19	3.70	514
GO-LU-155	177.9	1850	69	12.99	37	6.97	32	6.03	531
GO-LU-154	174.5	2683	88	16.87	43	8.25	45	8.63	522
GO-LU-153	173	4196	54	9.79	30	5.49	24	4.30	547
GO-LU-152	169.8	2587	69	13.14	37	7.05	32	6.10	525
GO-LU-151	167.8	2135	96	17.87	65	12.16	31	5.71	535
GO-LU-150	166.9	3794	50	9.07	30	5.44	20	3.63	552
GO-LU-149	165.75	2735	39	7.49	20	3.84	19	3.65	521
GO-LU-148	164.5	2684	61	11.42	34	6.37	27	5.06	534
GO-LU-147	162.5	2420	46	8.46	28	5.15	18	3.31	544
GO-LU-146b	160.5	3078	43	8.59	28	5.56	15	3.03	495
GO-LU-146a	159.75	2566	40	7.55	21	3.96	19	3.58	530
GO-LU-145	158	2959	39	7.54	21	4.06	18	3.48	517
GO-LU-144b	157.5	2187	38	6.88	19	3.44	19	3.44	552
GO-LU-144a	156.7	3692	50	9.29	36	6.69	14	2.60	538
GO-LU-143b	155.65	4752	36	6.86	14	2.67	22	4.19	525
GO-LU-143a	154.9	4362	39	7.07	19	3.45	20	3.63	552
GO-LU-142b	153.75	5027	53	10.69	19	3.83	34	6.85	496
GO-LU-142a	153	3208	118	22.08	58	10.85	60	11.23	535
GO-LU-141	152.25	4115	77	13.74	38	6.78	39	6.96	561
GO-LU-140b	150.75	4647	54	9.00	34	5.67	20	3.33	600
GO-LU-140a	150.25	5169	62	11.98	35	6.76	27	5.22	518
GO-LU-139	149.6	2490	68	12.51	42	7.73	26	4.78	544
GO-LU-138	148.75	2880	103	19.58	60	11.41	43	8.17	526
GO-LU-137b	147.75	2454	148	27.23	102	18.77	46	8.46	544
GO-LU-137a	147.25	2031	130	22.51	75	12.99	55	9.52	578
GO-LU-30	146.75	4570	135	11.17	66	5.46	69	5.71	1209
GO-LU-136	145.75	3798	139	26.18	110	20.70	29	5.48	529
GO-LU-29	144.75	4643	121	9.98	38	3.14	83	6.85	1212
GO-LU-135	144.5	1963	178	33.97	134	25.57	44	8.40	524
GO-LU-28	143.5	3132	96	17.27	41	7.37	55	9.89	556
GO-LU-134	143.25	2761	101	21.67	54	11.59	47	10.09	466
GO-LU-Z	142.75	2190	117	23.26	73	14.51	44	8.75	503
GO-LU-27	141.25	2748	193	20.99	108	11.75	85	9.24	920
GO-LU-Y	140.75	2111	99	18.57	64	12.01	35	6.57	533
GO-LU-133	140.5	4931	46	8.32	14	2.53	32	5.79	553
GO-LU-132	139.5	1893	164	31.21	95	18.08	69	13.13	526
GO-LU-131	138	2428	87	16.89	57	11.07	30	5.83	515
GO-LU-26	137.5	4023	98	8.89	40	3.63	58	5.26	1103
GO-LU-130	136.75	1758	99	19.34	68	13.28	31	6.05	512
GO-LU-25	135.75	2339	155	17.68	87	9.93	68	7.76	877
GO-LU-X	135.5	2360	80	16.13	52	10.48	28	5.65	496
GO-LU-129	134.5	1889	65	12.77	41	8.06	24	4.72	509
GO-LU-24	132.75	4065	41	6.43	9	1.41	32	5.02	638
GO-LU-128	132.5	3413	86	17.66	53	10.88	33	6.78	487
GO-LU-V	132.25	4221	82	15.89	55	10.66	27	5.23	516
GO-LU-23	132	4576	101	9.69	36	3.45	65	6.24	1042
GO-LU-127	131.75	4324	45	8.14	24	4.34	21	3.80	553
GO-LU-U	131.5	2457	105	20.92	66	13.15	39	7.77	502
GO-LU-T	131.25	3132	63	12.05	22	4.21	41	7.84	523
GO-LU-22	131	1845	157	16.19	95	9.79	62	6.39	970
GO-LU-126	130.75	1642	100	18.73	65	12.17	35	6.55	534
GO-LU-S	130.25	1702	94	19.03	65	13.16	29	5.87	494
GO-LU-125	130	4162	45	8.43	20	3.75	25	4.68	534
GO-LU-21	129.75	3022	105	10.13	47	4.53	58	5.59	1037
GO-LU-R	129.25	1574	134	24.36	92	16.73	42	7.64	550
GO-LU-124	129	1872	149	26.47	107	18.98	42	7.49	561

			REWORKED SPECIMENS		MESOZOIC REWORKED		CEN REW		
SAMPLE	Stratigraphic position (m)	Autochthonous specimens per mm ²	Raw value	Percentage per total amount of specimens	Raw value	% total specimens	Raw value	% total specimens	Total counted specimens in first round
GO-LU-20	128.75	1840	181	19.31	116	12.37	65	6.93	938
GO-LU-123	128.5	2006	118	23.55	64	12.77	54	10.78	501
GO-LU-Q	128.25	1625	120	25.10	84 53	17.57	36	7.53	478
GO-LU-I9 GO-LU-P	127.75	1766	122	23.87	33 75	4.80	69 47	9.20	511
GO-LU-18	127.2	2844	131	19.44	64	9.50	67	9.94	674
GO-LU-122	127	1820	155	27.88	97	17.45	58	10.43	556
GO-LU-17	126.5	1674	161	17.44	77	8.34	84	9.10	923
GO-LU-Δ	126	2816	76	14.31	30	5.65	46	8.66	531
GO-LU-16	125.85	1529	183	16.92	110	10.17	73	6.75	1082
GO-LU-0 GO-LU-121	125.7	1036	163 53	31.//	21	22.42	48	9.36 5.47	513
GO-LU-121 GO-LU-y	125.3	2204	168	32.06	113	21.56	55	10.50	524
GO-LU-Ñ	125	1859	143	28.71	100	20.08	43	8.63	498
GO-LU-120	124.85	1972	112	21.64	86	16.62	26	5.02	518
GO-LU-15	124.7	2210	108	20.38	67	12.64	41	7.74	530
GO-LU-14	124.1	2234	170	13.90	79	6.44	91	7.46	1220
GO-LU-119	123.9	1589	173	33.08	123	23.52	50	9.56	523
GO-LU-N	123.75	1845	144	27.55	104	19.89	40	7.05	523
GO-LU-118 GO-LU-13	123.4	2281	172	25.42	98	20.00	39	7 24	539
GO-LU-M	122.5	1419	156	28.26	114	20.65	42	7.61	552
GO-LU-117	122.3	4776	66	11.85	31	5.57	35	6.28	557
GO-LU-L	122.1	1083	123	26.00	93	19.66	30	6.34	473
GO-LU-12	121.85	1144	181	18.02	101	10.05	80	7.96	1005
GO-LU-116	121.6	809	207	40.12	150	29.07	57	11.05	516
GO-LU-K	121.25	1125	168	32.62	118	22.91	50	9./1	515
GO-LU-II GO-LU-10	119	1869	203	19.19	137	9.78	93 86	8.40 7.62	1123
GO-LU-J	118.85	869	126	28.31	84	18.88	42	9.44	445
GO-LU-115	118.75	794	183	36.75	143	28.71	40	8.03	498
GO-LU-β	118.65	2257	100	18.83	54	10.17	46	8.66	531
GO-LU-09	118.5	1469	173	22.27	100	12.87	73	9.40	777
GO-LU-114	118.35	1377	174	32.34	103	19.14	71	13.20	538
GO-LU-α	118.2	2047	46	9.26	16	3.22	30	6.04	497
GO-LU-I GO-LU-08	117 75	3336	191	14.95	35 116	0.93	38 75	8.00 6.40	475
GO-LU-113	117.5	5019	65	11.19	28	4.82	37	6.37	581
GO-LU-112b	117	4204	73	12.87	39	6.88	34	6.00	567
GO-LU-112a	116.6	6754	35	6.59	14	2.64	21	3.95	531
GO-LU-07	116.45	4655	55	9.14	20	3.32	35	5.81	602
GO-LU-H	116.3	2928	96 55	18.25	64	12.17	32	6.08	526
GO-LU-IIIC	116.15	5935 2743	55 101	9.52	30 45	5.19	25	4.33	578
GO-LU-G	115 75	2463	43	9.01	43	2.52	31	6 50	477
GO-LU-05	115.5	2436	163	13.18	84	6.79	79	6.39	1237
GO-LU-111b	115.25	2519	125	25.25	71	14.34	54	10.91	495
GO-LU-111a	115	1719	65	12.51	28	5.39	37	7.12	520
GO-LU-F	114.75	2315	84	15.97	39	7.41	45	8.56	526
GO-LU-04	113.5	3449	166	11.19	64 18	4.32	102	6.88	1483
GO-LU-110 GO-LU-03	113.25	4542	33 131	10.54	18	3.45	37	6.70	322 1284
GO-LU-65 GO-LU-E	112.5	4026	75	13.69	33	6.02	42	7.66	548
GO-LU-109	111.5	4572	86	15.47	21	3.78	65	11.69	556
GO-LU-D	111	2417	82	16.14	44	8.66	38	7.48	508
GO-LU-108	109.9	3987	105	18.31	64	11.16	41	7.15	574
GO-LU-107	108.5	1870	128	23.70	76	14.07	52	9.63	540
GO-LU-C	108	2363	121	25.85	76	16.24	45	9.62	468
GO-LU-106Y	107.5	2215	200	14.83	57	5.18	32	9.00	/14 512
GO-LU-106	106.25	2807	136	26.82	87	17.16	49	9.66	507
GO-LU-105	105.5	2003	166	31.98	113	21.77	53	10.21	519
GO-LU-104	104.9	1547	122	22.98	76	14.31	46	8.66	531
GO-LU-B	104.25	2273	100	18.73	59	11.05	41	7.68	534
GO-LU-00	103.75	2985	117	10.78	42	3.84	75	6.94	1081
GO-LU-103	102.35	5458	57	10.59	28	5.20	29	5.39	538
GO-LU-102	101.75	1802	119	23.06	72	13.95	47	9.11	516
GO-LU-101 GO-LU-A	100.5	1407	99 105	21 78	59 54	9.92	40 51	0./3 10.58	595 482
GO-LU-100	98	2082	75	14.91	36	7.16	39	7.75	503

SAMPLE	Stratigraphic	Raw value of	Warm	and oligotrophic taxa	"Near	shore" taxa	Total counted
	position (m)	Zygrhablithus bijugatus – per mm ²	Raw value	Percentage per total amount of autochthonous specimens	Raw value	% autochthonous	specimens in first round
GO-LU-156	179.2	68	47	10.22	19	4.13	514
GO-LU-155	177.9	68	46	9.96	10	2.60	531
GO-LU-154	174.5	62	34	7.84	12	2.65	522
GO-LU-153	173	170	54	10.95	12	2.43	547
GO-LU-152	169.8	148	52	11.40	6	1.75	525
GO-LU-151 GO-LU-150	107.8	136	50 62	11.59	5	1.00	552
GO-LU-149	165 75	91	48	9.96	13	2.90	521
GO-LU-148	164.5	119	58	12.26	8	1.69	534
GO-LU-147	162.5	63	51	10.25	4	0.70	544
GO-LU-146b	160.5	54	36	7.96	16	3.76	495
GO-LU-146a	159.75	73	46	9.39	12	2.45	530
GO-LU-145	158	105	65	13.49	5	1.26	517
GO-LU-144b	157.5	298	122	23.74	16	3.11	552
GO-LU-144a	156./	83	60 60	13.52	8	1.84	538
GO-LU-1430	154.9	102	58	11.32	9	1.76	552
GO-LU-142b	153.75	148	55	12.42	15	3.39	496
GO-LU-142a	153	106	50	11.67	12	2.71	535
GO-LU-141	152.25	179	46	9.51	8	1.86	561
GO-LU-140b	150.75	119	72	13.19	15	2.75	600
GO-LU-140a	150.25	170	48	10.54	8	1.98	518
GO-LU-139	149.6	31	33	6.94	6	1.16	544
GO-LU-138 CO LU 137b	148./5	80	42	9.93	9	2.84	526
GO-LU-137a	147.25	80	40	10.09	19	3.58	578
GO-LU-30	146.75	340	174	16.20	29	2.65	1209
GO-LU-136	145.75	165	53	13.44	6	1.54	529
GO-LU-29	144.75	251	144	13.20	22	1.97	1212
GO-LU-135	144.5	51	38	10.84	5	1.45	524
GO-LU-28	143.5	143	55	11.96	11	2.39	556
GO-LU-134	143.25	91	38	10.27	4	1.10	466
GO-LU-Z	142.75	96	61 57	15.80	12	2.07	503
GO-LU-27	141.25	58 24	46	10.60	12	0.92	533
GO-LU-133	140.5	156	31	6.11	8	1.58	553
GO-LU-132	139.5	115	56	15.49	13	3.46	526
GO-LU-131	138	165	57	13.32	11	2.57	515
GO-LU-26	137.5	521	224	22.30	46	4.53	1103
GO-LU-130	136.75	17	36	8.72	6	1.69	512
GO-LU-25	135.75	188	100	13.79	37	5.13	877
GO-LU-X	135.5	182	01	14.66	15	3.01	496
GO-LU-129	134.5	395	43	14 57	13	2.40	638
GO-LU-128	132.5	187	44	10.97	19	4.99	487
GO-LU-V	132.25	292	59	13.59	13	3.00	516
GO-LU-23	132	243	97	10.31	16	1.81	1042
GO-LU-127	131.75	494	96	18.90	24	4.72	553
GO-LU-U	131.5	204	59	14.86	12	3.53	502
GO-LU-T	131.25	313	89	19.35	18	3.91	523
GO-LU-22	130 75	89 106	97 47	11.87	25 15	3.14	534
GO-LU-S	130.75	132	47 61	15.25	12	3.00	494
GO-LU-125	130	255	48	9.82	16	3.27	534
GO-LU-21	129.75	201	112	11.96	35	3.76	1037
GO-LU-R	129.25	79	60	14.42	15	3.85	550
GO-LU-124	129	82	42	10.06	19	4.61	561
GO-LU-20	128.75	56	70	9.25	30	3.97	938
GO-LU-123	128.5	47	32	8.36	11	3.13	501
GO-LU-Q	128.25	109	34 106	9.50	10	1.96	4/8
GOLU-IS	127.75	95	40	10.84	19	2.00	511
GO-LU-18	127.4	168	73	13.44	23	4.42	674
GO-LU-122	127	123	62	15.46	10	2.74	556
GO-LU-17	126.5	53	61	8.01	44	5.97	923
GO-LU-A	126	192	69	15.16	10	2.20	531
GO-LU-16	125.85	61	80	8.90	70	8.07	1082
GO-LU-O	125.7	27	21	6.00	22	6.29	513
GO-LU-121	125.5	522	73	13.73	41	7.62	585

SAMPLE	Stratigraphic	Raw value of Zvorhablithus bijugatus	Warm a	and oligotrophic taxa	"Near	Total counted	
	position (m)	per mm ²	Raw value	Percentage per total amount of autochthonous specimens	Raw value	% autochthonous	in first round
GO-LU-γ	125.3	74	43	12.08	33	9.27	524
GO-LU-Ñ	125	79	46	12.96	22	6.20	498
GO-LU-120	124.85	131	62	15.29	11	2.96	518
GO-LU-15	124.7	120	38	9.00	14	3.32	530
GO-LU-14	124.1	83	104	9.86	27	2.52	1220
GO-LU-119	123.9	18	23	6.57	.7	2.00	523
GO-LU-N	123.75	49	36	9.50	10	2.90	523
GO-LU-118	123.4	54	32	9.70	11	3.64	502
GO-LU-IS	122.7	08 54	34 20	8.40	15	3.73	552
GO-LU-M	122.5	59	59 40	9.85	0	5.05	557
GO-LU-II/	122.5	30 28	31	8.15	0 5	1.05	473
GO-LU-L	122.1	13	48	5 77	32	3.89	1005
GO-LU-116	121.65	45	41	13.27	12	4 21	516
GO-LU-K	121.25	71	52	14 99	11	3.17	515
GO-LU-11	121	37	74	7.99	30	3.37	1125
GO-LU-10	119	58	114	12.58	61	6.68	1129
GO-LU-J	118.85	27	37	11.60	26	8.15	445
GO-LU-115	118.75	45	52	16.51	30	9.37	498
GO-LU-β	118.65	21	37	8.58	5	1.62	531
GO-LU-09	118.5	68	53	8.69	51	8.44	777
GO-LU-114	118.35	64	50	13.74	25	6.87	538
GO-LU-a	118.2	123	81	17.96	16	3.55	497
GO-LU-I	118	5	39	9.65	6	1.49	475
GO-LU-08	117.75	126	100	10.15	22	2.19	1171
GO-LU-113	117.5	195	66	12.79	7	1.36	581
GO-LU-112b	117	196	48	9.72	16	3.24	567
GO-LU-112a	116.6	204	51	10.28	15	3.02	531
GO-LU-0/	116.45	204	20	10.24	5	0.91	602 526
GO-LU-II	116.5	522	39 02	9.07	20	1.40	520
GO-LU-IIIC GO-LU-06	116	139	169	16.09	20 47	4 49	1148
GO-LU-G	115 75	139	90	20.74	27	6.22	477
GO-LU-05	115.5	186	172	15.98	63	6.57	1237
GO-LU-111b	115.25	143	51	13.78	19	5.68	495
GO-LU-111a	115	57	52	11.44	13	2.97	520
GO-LU-F	114.75	110	67	15.16	17	4.07	526
GO-LU-04	113.5	141	162	12.30	54	4.29	1483
GO-LU-110	113.25	379	77	16.49	11	2.78	522
GO-LU-03	112.5	263	208	18.04	49	4.47	1284
GO-LU-E	112	170	60	12.68	16	4.44	548
GO-LU-109	111.5	97	42	8.94	12	2.55	556
GO-LU-D	111	176	68	15.96	16	4.69	508
GO-LU-108	109.9	196	50	10.57	16	3.42	574
GO-LU-10/	108.5	104	66 50	16.02	7	1.94	540
GO-LU-C	108	157	28 109	10./1	3	0.86	468
GO-LU-01 CO LU 106Y	107.5	178	60	1/./0	13	2.30	512
GO-LU-106	106.75	1/0	 ⊿6	12.10	7	2.31	507
GO-LU-105	105.5	62	30	11.05	6	1 98	510
GO-LU-104	104.9	53	44	10.76	16	4.16	531
GO-LU-B	104.25	141	62	14.29	8	2.07	534
GO-LU-00	103.75	427	224	23.22	57	5.96	1081
GO-LU-103	102.35	363	60	12.47	15	3.33	538
GO-LU-102	101.75	100	43	10.83	27	7.30	516
GO-LU-101	100.5	83	65	13.02	12	2.62	595
GO-LU-A	99.25	63	56	14.85	10	2.65	482
GO-LU-100	98	68	41	9.58	12	2.80	503

SAMPLE	Stratigraphic	Reticulofenestra minuta		Reticulof	enestra dictyoda	Cocco	Total counted	
ро	position (m)	Raw value	% autochthonous	Raw value	% autochthonous	Raw value	% autochthonous	specimens in first round
CO LU 156	170.2	200	12.19	86	18 70	74	16.00	514
GO-LU-150 GO-LU-155	179.2	184	45.48	114	24.68	74	15.15	531
GO-LU-154	174.5	155	35.76	125	28.84	75	17.30	522
GO-LU-153	173	210	42.60	122	24.75	70	14.10	547
GO-LU-152	169.8	153	33.55	138	30.26	69	15.13	525
GO-LU-151	167.8	163	37.13	113	25.74	67	15.26	535
GO-LU-150	166.9	156	31.11	181	36.09	70	13.96	552
GO-LU-149	165.75	167	34.65	169	35.06	51	10.58	521
GO-LU-148	164.5	140	29.60	150	31.71	81	17.12	534
GO-LU-147	162.5	156	31.36	184	36.98	78	15.68	544
GO-LU-146b	160.5	132	29.20	157	34.73	77	17.04	495
GO-LU-146a	159.75	177	36.12	138	28.16	87	17.76	530
GO-LU-145	158	164	34.31	136	28.45	84	17.57	517
GO-LU-144b	157.5	142	27.63	126	24.51	86	16.73	552
GO-LU-144a	156.7	161	32.99	136	27.87	80	16.39	538
GO-LU-143b	155.65	148	30.30	165	33.78	63	12.90	525
GO-LU-143a	154.9	176	34.34	157	30.63	87	16.98	552
GO-LU-142b	153.75	155	34.99	116	26.19	77	17.38	496
GO-LU-142a	153	159	37.50	80	18.87	86	20.28	535
GO-LU-141	152.25	187	38.68	123	25.44	92	18.92	561
GO-LU-140D	150.75	185	33.88	120	23.08	109	19.96	519
GO-LU-140a	130.23	170	37.32	155	29.20	07	14./1	518
GO-LU-139	149.0	191	40.17	88	23.87	00 71	16.51	526
GO-LU-138 GO-LU-137b	148.75	123	31.02	94	20.80	81	20.43	544
GO-LU-1379	147.75	168	37 54	77	17.21	89	19.89	578
GO-LU-30	146.75	454	42.27	229	21.32	98	9.12	1209
GO-LU-136	145.75	139	35.60	76	19.46	73	18.69	529
GO-LU-29	144.75	420	38.50	259	23.74	143	13.11	1212
GO-LU-135	144.5	83	23.99	101	29.19	78	22.54	524
GO-LU-28	143.5	165	35.87	114	24.78	62	13.48	556
GO-LU-134	143.25	134	36.71	81	22.19	80	21.92	466
GO-LU-Z	142.75	114	29.53	104	26.94	58	15.03	503
GO-LU-27	141.25	260	35.79	177	24.36	119	16.38	920
GO-LU-Y	140.75	112	25.81	159	36.64	80	18.43	533
GO-LU-133	140.5	159	31.36	190	37.48	96	18.93	553
GO-LU-132	139.5	87	24.07	64	17.70	92	25.45	526
GO-LU-131	138	169	39.49	75	17.52	74	17.29	515
GO-LU-26	137.5	349	34.74	202	20.11	104	10.35	1103
GO-LU-130	136.75	135	32.69	103	24.94	90	21.79	512
GO-LU-25	135./5	219	30.35	182	25.23	110	15.25	8//
GO-LU-X	133.5	133	51.97	107	23.72	50	13.38	496
GO-LU-12)	132.75	185	30.99	201	33.67	68	11.20	638
GO-LU-128	132.5	149	37.16	80	19.95	68	16.96	487
GO-LU-V	132.25	154	35.48	101	23.27	67	15.44	516
GO-LU-23	132	405	43.04	187	19.87	154	16.37	1042
GO-LU-127	131.75	136	26.77	103	20.28	97	19.09	553
GO-LU-U	131.5	96	24.18	103	25.94	85	21.41	502
GO-LU-T	131.25	143	31.09	96	20.87	77	16.74	523
GO-LU-22	131	339	41.70	159	19.56	105	12.92	970
GO-LU-126	130.75	155	35.71	93	21.43	84	19.35	534
GO-LU-S	130.25	105	26.25	102	25.50	82	20.50	494
GO-LU-125	130	162	33.13	149	30.47	67	13.70	534
GO-LU-21	129.75	367	39.38	231	24.79	113	12.12	1037
GO-LU-R	129.25	108	25.96	127	30.53	61	14.66	550
GO-LU-124	129	109	26.42	125	30.30	75	18.18	561
GO-LU-20 CO LU 122	128.75	319	42.17	146	19.30	102	13.48	938
GO-LU-125	128.5	134	34.99	88	22.98	79 50	20.05	301
GO-LU-Q	128.23	372	29.01	271	55.24 27.85	118	10.48	478
GO-LU-P	127.75	129	33.16	82	21.05	70	17.00	511
GO-LU-18	127.4	150	27.62	161	29.65	81	14.92	674
GO-LU-122	127.2	98	24.44	77	19.20	85	21.20	556
GO-LU-17	126.5	351	46.06	113	14.83	97	12.73	923
GO-LU-A	126	109	23.96	126	27.69	87	19.12	531
GO-LU-16	125.85	412	45.85	144	16.03	82	9.13	1082
GO-LU-O	125.7	121	34.57	60	17.14	64	18.29	513
GO-LU-121	125.5	207	38.95	105	19.76	75	14.11	585
GO-LU-γ	125.3	118	33.15	61	17.13	62	17.42	524
GO-LU-Ñ	125	121	34.08	63	17.75	57	16.06	498

SAMPLE	MPLE Stratigraphic		Reticulofenestra minuta		enestra dictyoda	Coccol	Total counted	
	position (iii)	Raw value	% autochthonous	Raw value	% autochthonous	Raw value	% autochthonous	in first round
GO-LU-120	124.85	140	34.53	81	19.98	76	18.74	518
GO-LU-15	124.7	130	30.81	97	22.99	77	18.25	530
GO-LU-14	124.1	535	50.95	199	18.95	100	9.52	1220
GO-LU-119	123.9	91	26.00	112	32.00	80	22.86	523
GO-LU-N	123.75	129	34.04	91	24.01	60	15.83	523
GO-LU-118	123.4	96	29.09	87	26.36	61	18.48	502
GO-LU-13	122.7	176	43.78	89	22.14	47	11.69	539
GO-LU-M	122.5	162	40.91	78	19.70	60	15.15	552
GO-LU-117	122.3	166	33.81	164	33.40	77	15.68	557
GO-LU-L	122.1	104	29.71	125	35.71	52	14.86	473
GO-LU-12	121.85	353	42.87	215	26.11	92	11.17	1005
GO-LU-116	121.6	97	31.39	68	22.01	54	17.48	516
GO-LU-K	121.25	131	37.75	61	17.58	45	12.97	515
GO-LU-II	121	447	48.59	169	18.37	108	11.68	1125
GO-LU-IU	119	505	25.11	199	21.90	105	11.57	1129
GO-LU-J	118.85	112	55.11	45	14.11	40	14.42	445
GO-LU-II5	118.75	25	1.94	85	27.50	12	12.00	498
GO-LU-p	118.05	247	44.78	105	19.72	57	13.23	551 777
GO-LU-09	118.35	120	40.89	62	17.56	58	15.03	538
GO-LU-II4 GO-LU-a	118.55	163	36.14	96	21.29	52	11.53	497
GOLUJ	118	105	42 33	101	25.00	65	16.09	475
GO-LU-08	117 75	474	48.37	174	17.76	110	11.22	1171
GO-LU-113	117.5	179	34.69	142	27.52	79	15.31	581
GO-LU-112b	117	154	31.17	133	26.92	101	20.45	567
GO-LU-112a	116.6	118	23.79	180	36.29	89	17.94	531
GO-LU-07	116.45	153	27.97	207	37.84	68	12.43	602
GO-LU-H	116.3	202	46.98	64	14.88	86	20.00	526
GO-LU-111c	116.15	144	27.53	139	26.58	90	17.21	578
GO-LU-06	116	312	29.79	287	27.40	130	12.41	1148
GO-LU-G	115.75	156	35.94	68	15.67	72	16.59	477
GO-LU-05	115.5	338	31.49	222	20.68	133	12.39	1237
GO-LU-111b	115.25	116	31.35	74	20.00	49	13.24	495
GO-LU-111a	115	220	48.40	64	14.08	57	12.54	520
GO-LU-F	114.75	158	35.75	110	24.89	62	14.03	526
GO-LU-04	113.5	597	45.33	202	15.34	162	12.30	1483
GO-LU-110	113.25	131	28.05	147	31.48	68	14.56	522
GO-LU-03	112.5	314	27.23	316	27.41	137	11.88	1284
GO-LU-E	112	138	29.18	135	28.54	74	15.64	548
GO-LU-109	111.5	159	33.83	144	30.64	64	13.62	556
GO-LU-D	111	103	24.18	122	28.64	73	17.14	508
GO-LU-108	109.9	155	33.08	140	29.88	55 65	11.03	5/4
GO-LU-IU/	108.5	128	31.07	90 72	23.79	50	13.76	169
COLUM	107.5	167	27.47	166	27.30	70	14.41	714
GO-LU-106X	106.75	133	31.44	94	27.50	78	18.44	512
GO-LU-106	106.25	118	31.81	100	26.95	62	16.71	507
GO-LU-105	105.5	97	27.48	106	30.03	58	16.43	519
GO-LU-104	104.9	139	33.99	96	23.47	57	13.94	531
GO-LU-B	104.25	140	32.26	98	22.58	64	14.75	534
GO-LU-00	103.75	310	32.14	123	12.75	136	14.10	1081
GO-LU-103	102.35	112	23.28	172	35.76	92	19.13	538
GO-LU-102	101.75	95	23.93	108	27.20	72	18.14	516
GO-LU-101	100.5	212	42.79	84	16.95	71	14.33	595
GO-LU-A	99.25	123	32.63	78	20.69	70	18.57	482
GO-LU-100	98	145	33.88	101	23.60	81	18.93	503