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Evidence for enhanced Mediterranean thermohaline
circulation during rapid climatic coolings
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Abstract

Molecular biomarkers (Cs; alkenones, n-nonacosane and n-hexacosanol) and TOC are used together with benthic
5'%0 and 8'3C data to document the hydrographic response of the western Mediterranean Sea to rapid climatic
variability. These proxies are recorded in core MD 95-2043 (Alboran Sea) affording the study of the Dansgaard—
Oeschger (D-0) and Heinrich (HE) variability during the last glacial period. The results suggest that rapid changes in
the western Mediterranean thermohaline circulation occurred in parallel to sea surface temperature oscillations.
Enhanced deep water ventilation occurred during cold intervals (HE and D-O Stadials) probably driven by a
strengthening of north-westerly wind over the north-western Mediterranean Sea. In contrast, decreased intensity of the
thermohaline circulation is detected during warm intervals (D-O Interstadials) which led to low oxygenated deep water
masses and better preservation of the organic matter in the sediment. © 2000 Elsevier Science B.V. All rights
reserved.

Keywords: Heinrich events; Mediterranean Sea; biomarkers; deep-water environment; thermohaline circulation

1. Introduction

The climate of the last glacial period was very
unstable. This characteristic was first reported in
Greenland ice cores where the D-O cycles were
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defined [1-3]. Further studies have demonstrated
that a D-O-type variability also modulated the
glacial climatology and hydrology of several other
regions in the Northern Hemisphere ([4-6] and
references therein). This rapid millennial-scale cli-
matic variability suggests a rapid coupling of the
atmospheric—oceanic systems.

The Mediterranean Sea is a semi-enclosed ba-
sin, extending W-E at intermediate latitudes
(~30-45°N). It operates as a concentration basin
and the formation of dense water masses is driven
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by climatic conditions [7,8]. In this context, cli-
mate signals are less attenuated being recorded
in the sediments at much higher resolution than
in the open ocean [9]. A recent, high resolution
reconstruction of sea surface temperature (SST) in
the Alboran Sea shows a D-O-type variability
during the last ice age [5]. However, the impact
of the abrupt climatic changes documented in
Greenland ice core records on Mediterranean hy-
drography still remains to be explained.

The present study is focused on the analysis of
some marine (Cs; alkenones) and terrestrial (n-
nonacosane and n-hexacosanol) biomarkers,
TOC, benthic 880 and §'*C on the time interval
between 20 and 52 kyr BP in a long piston core
from the Alboran Sea (MD 95-2043). The Ci;
alkenones are major components of haptophyteae
algae from which the coccolithophore Emiliania
huxleyi is the most abundant contributor at
present day [10,11]. Their occurrence in ancient
sediments is currently assumed to reflect contribu-
tions from algal primary productivity [12-14]. n-
Nonacosane and n-hexacosanol are major lipid
components of higher plant epicuticular waxes
[15] and their concentration in marine sediments
is widely used to record higher plant inputs to the
marine environment [16,17]. The results are com-
pared with the UX-SST and planktonic §'$O pro-
files previously reported [5]. They provide a high
resolution record of the rapid hydrographic
changes of the western Mediterranean basin, re-
sponding to the D-O and HE variability.

2. Climatological and oceanographic setting

The Mediterranean Sea is located in a transi-
tional climatic regime. In summer, it is dominated
by the strong Azores anticyclone while in winter
this high-pressure system collapses and European
depressions migrate southwards creating high in-
stability and frequent incursions of north-wester-
lies [18]. The predominant anticyclonic conditions
produce an excess of evaporation over precipita-
tion plus river runoff generating dense water
masses [8,19]. Accordingly, this semi-enclosed
sea is characterized by a complete thermohaline
circulation system, involving surface water en-

trance from the north Atlantic Ocean, in situ den-
sification by air-sea interaction and deep outflow-
ing to the Atlantic.

Deepening of dense Mediterranean water
masses occurs in three main vertical circulation
belts [20]. Strong winter evaporation in the east-
ern basin generates levantine intermediate water
(LIW) whereas deep water is produced in the
Adriatic Sea (E Mediterranean) and the Gulf of
Lions (W Mediterranean). These deep water sys-
tems operate similarly to the north Atlantic deep
water overturning. LIW is also involved in the
formation of deep water masses in both Adriatic
and Gulf of Lions regions implying a strong com-
munication between eastern and western basins at
the level of these two deep overturning cells [20].

The Alboran Sea is the westernmost basin of
the Mediterranean Sea and therefore, the first re-
ceiving inflowing Atlantic water. Three different
water masses fill this basin whose circulation pat-
terns are mainly controlled by water exchange
through the narrow and shallow Strait of Gibral-
tar. The upper layer (0-220 m) is formed by modi-
fied Atlantic water (MAW) which flows eastwards
through the Alboran Sea, describing two anticy-
clonic, western and eastern, gyres [21]. This sur-
face water circulation pattern displays a high an-
nual-interannual variability driven mainly by the
position of the atmospheric pressure cells [21-25].
The second water layer (220-1100 m) is filled by
LIW partially modified through its way from the
eastern Mediterranean basin. This intermediate
water mass is the main source of Mediterranean
outflowing water (MOW) [26-28]. The deep layer
(below 1100 m) is filled by western Mediterranean
deep water (WMDW), which only contributes ep-
isodically (about 10%) to MOW [26,29,30].

2.1. Formation of Western Mediterranean Deep
Water (WMDW)

The Gulf of Lions (Fig. 1) is one of the few
oceanic regions where a deep water mass forms
at present [31-33]. The production of deep water
is controlled by wind strength, the initial density
of the source waters (MAW and LIW), and the
circulation pattern in the area. The latter consists
of a large permanent cyclonic gyre, involving a
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Fig. 1. Map of the Mediterranean Sea indicating the location of the studied core (MD 95-2043) and the Mediterranean sub-ba-
sins. Arrows illustrate the main pattern of present day surface circulation. Shaded areas mark the present day regions where in-

termediate and deep Mediterranean waters are formed.

density stratification which is less pronounced in
the center than on the periphery.

The intensity of north-westerlies over Europe
depend on the Atlantic depressions. The Carcas-
sone Cap (south-west of France), is the preferred
southern route for these depressions, moving east-
wards from the Atlantic to the Mediterranean re-
gion [18]. Westerlies blow through the passages
between the Pyrenees, the Massif Central and
the Alps, generating the local Tramontana and
Mistral winds. These are strong airflows that
may blow for several weeks in winter, carrying
cold and dry polar or continental air masses to
the Gulf of Lions [18,34]. They lead to strong
evaporation and cooling of surface water which
may become sufficiently dense to sink to a great
depth. The production of relatively dense water
can also occur sporadically over the wide conti-
nental shelf from the Gulf of Lions, although it
does not contribute significantly to WMDW for-
mation, since deep convection occurs in the off-
shore region of the gulf [31,34]. Thus, deep water
formation was probably active too during glacial
periods, when the sea level drop left most of the
continental shelf in the Gulf of Lions above sea
level.

Interannual variations in the formation rate of

WMDW are associated with anomalies of the at-
mospheric forcing over the basin [20] giving rise
to different types of deep water depending on pre-
dominant meteorological conditions [32]. Thus,
WMDW formation has not been observed in
years of relatively mild European winters, e.g.
1972. Results from circulation models indicate
that wind stress determines the general circulation
variability on the interannual time scale [35]. In
addition, long meteorological and oceanographic
time series show that the Mediterranean amplifies
its circulation in response to the wind anomalies
[35,36] which are the ultimate driving force for the
main water flow through the straits of Sicily [37]
and Gibraltar [36].

3. Materials and methods

Core MD 95-2043 was retrieved from the west-
ern Alboran Sea (36°8.6'N; 2°37.3'W; 1841 m
water depth) during the 1995 IMAGES cruise on-
board R/V Marion Dufresne. The chronological
framework for the period covered in this study
(20-52 kyr BP) is based on the correlation of
the UY-SST profile with the 8O curve from
GISP2 ice core [2,3]. This age model has been
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previously presented and discussed, demonstrat-
ing that it does not introduce significant age mod-
ification in relation to another independent age
model based on AMS *C ages and oxygen iso-
topic stratigraphy [5].

3.1. Molecular biomarkers

Three different molecular biomarkers are
studied: long chain alkenones, alkanes and alco-
hols. All were analyzed using the same procedure.
Sediment samples (=2 g) were freeze-dried and
manually grounded. After addition of an internal
standard mixture containing n-nonadecan-1-ol, n-
hexatriacontane and n-tetracontane, dry sedi-
ments were extracted in an ultrasonic bath with
dichloromethane. The extracts were hydrolyzed
with 6% potassium hydroxide in methanol for
the elimination of wax ester interferences. Com-
pounds were recovered with hexane and evapo-
rated to dryness with an Nj stream. The extracts
were finally redissolved with toluene and derivat-
ized with bis(trimethylsilyl)trifluoroacetamide be-
fore instrumental analysis.

The analyses were performed with a Varian gas
chromatograph Model 3400 equipped with a sep-
tum programmable injector and a flame ioniza-
tion detector. The instrument was equipped with
a CPSIL-5 CB column coated with 100% dime-
thylsiloxane (film thickness 0.12 wm). Hydrogen
was the carrier gas (50 cm/s). The oven temper-
ature was programmed from 90° to 140°C at
20°C/min, then to 280°C at 6°C/min (holding
time 25 min) and, finally, to 320°C at 10°C/min
(holding time of 6 min). The injector was pro-
grammed from 90°C (holding time 0.3 min) to
320°C at 200°C/min (final holding time 55 min).
Further details on the analytical conditions are
given in [38]. Selected samples were examined by
gas chromatography-mass spectrometry for con-
firmation of compound identification and evalua-
tion of possible coelutions. The average reproduc-

ibility of the n-alkane, m-alcohol and alkenone
concentrations was better than 10%. Five repli-
cates of a sediment sample showed a standard
deviation of *£0.15°C.

3.2. Total organic carbon (TOC)

Sediment samples for organic carbon were first
freeze-dried and homogenized. The carbonate
fraction was removed by addition of HCI solu-
tions of increasing concentration, from 5 to
10%. The resulting suspension was centrifuged
for 10-20 min at 3000 rpm to avoid loss of fine
particles. Then the decarbonated sediment was
neutralized by double washing with ultra-pure
water and finally, freeze-dried. TOC was deter-
mined with a Carlo-Erba (NA 1500) Elemental
Analyser and percentages calculated after correc-
tion for the carbonated fraction. Sample dupli-
cates show a reproducibility better than 10%.

3.3. Carbon and oxygen isotopes

Stable isotope measurements were carried out
on the planktic foraminifer Globigerina bulloides
(25-30 well-preserved specimens picked from the
300-355 um size) and on the benthic foraminifer
Cibicidoides spp. (10-20 specimens picked from
the 250-500 um fraction). These measurements
were made with a SIRA mass spectrometer
equipped with a VG isocarb common acid bath
system. Analytical reproducibility of laboratory
standards was better than *0.08%0 for &'30.
Calibration to VPDB is via the NBS19 standard.

4. Results
4.1. Organic matter records

The UX-SST profile from core MD 95-2043 for
the last glacial period (Fig. 2b) has been shown

«

Fig. 2. (a) 8'%0 profile from Greenland ice core GISP2 [2,3]. Numbers indicate the Dansgaard—Oeschger Interstadials and shaded
bars show the position of the Stadials and HE2-5. (b—f) MD 95-2043 profiles of: (b) U%%’ -SST (left axis), the thin line (right axis)
shows the percentages of N. pachyderma [5]; (c) total Cs; alkenone concentrations (marine); (d) total organic carbon (TOC) per-
centages; (e) n-nonacosane content (terrigenous, right axis), dotted line (left axis) is the same SST curve as in (b); (f) n-hexacosa-

nol (terrigenous).
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and discussed in a previous study [5] demonstrat-
ing its connection with the rapid climatic variabil-
ity in Greenland ice cores [1-3]. The total amount
of Cj; alkenones (di-unsaturated plus tri-unsatu-
rated Cj; alkenones) shows also very strong oscil-
lations along the glacial period (Fig. 2c¢). High
values are recorded during the warm D-O Inter-
stadials while the Stadials are well represented by
drops in alkenone concentration. Minimum alke-
none values are generally recorded during HE.
The TOC profile, despite of its lower resolution,
also shows large oscillations (0.6-1.2%) accompa-
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nying the D-O cyclicity and, therefore, displays
a great parallelism with the alkenone curve
(r=0.86, P<0.005; Fig. 2d).

Terrestrial biomarkers, n-nonacosane and n-
hexacosanol, also show a high short term varia-
bility along the glacial period (Fig. 2e.f). n-Non-
acosane maxima correspond to cold periods, in
opposition to Ci; alkenones and TOC, reaching
the highest values during H2 (Fig. 2e). In con-
trast, n-hexacosanol (Fig. 2f) does not show a
clear pattern in relation to the D-O-type variabil-
ity. Most of the warm intervals are associated
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Fig. 3. MD 95-2043 age profiles of: (a) Ug—SST; (b) 880 G. bulloides (reverse y axis); (c) 8'30 Cibicidoides spp. (reverse y

axis); (d) 8'3C Cibicidoides spp. (reverse y axis).
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with higher values than the cold intervals,
although this difference is not always well defined.
The lower parallelism between the two terrestrial
proxies (r=0.6, P <0.005) reflects a complex be-
havior suggesting that other factors, independent
of the terrestrial input, modulate the terrigenous
sedimentary signal.

4.2. Isotopic records

The 880 record from G. bulloides (Fig. 3b) ex-
hibits (~1%o) depletions and enrichments asso-
ciated with the D-O Interstadials and Stadials,
respectively. These isotopic enrichments are less
defined during the Stadials which are associated
with a HE, probably as consequence of the en-
trance, during these period, of fresh melt polar
water through the Strait of Gibraltar [5]. The
two, 880 and 8'*C, benthic isotopic curves
(Fig. 3c,d) show a great parallelism (r=0.86,
P <0.005) recording high and low values during
Stadials and Interstadials respectively. The D-O-
type variability in Cibicidoides spp. 880 (0.5-
1%o) is clearer than in G. bulloides 880 since
the isotopic enrichment in the deep waters is
well defined for all the Stadial periods, even those
coincident with HE. The intensity of the benthic
813C oscillations related to the D-O cycles was
about 0.6%0, and consequently larger than the
mean deep ocean §'*C enrichment (0.46 %o ) asso-
ciated with the last deglaciation [39]. Cibicidoides
spp. are epibenthic species and their §'*C compo-
sition is dominated by deep water ventilation con-
ditions [40-42]. The low values recorded during
the Interstadials (0.8-1%o0) indicate that the
deep water masses were not well ventilated during
these episodes although they never reached anoxic
values.

5. Discussion

5.1. Changes in western Mediterranean deep water
conditions

The D-O-type variability recorded in both
benthic 8'%0 and §'3C profiles (Fig. 3c,d) moni-
tors the same oceanographic process consisting of

the formation of a denser (higher §'%0 values)
and better ventilated (higher 8'*C values) deep
water mass during the Stadials than during the
Interstadials. It can be therefore inferred that
changes in the glacial WMDW properties oc-
curred in parallel with the D-O oscillations.
This glacial WMDW should be formed in the
Gulf of Lions (north-western Mediterrancan)
analogously to the present day WMDW circula-
tion pattern (cf. Section 2). As indicated above,
winter westerly winds are one of the main forcing
factors of this process and their strength is related
to the presently observed interannual variability
in the intensity of WMDW formation [35,43].

The high n-nonacosane values (Fig. 2e) re-
corded during the cold Stadials also suggest the
occurrence of enhanced wind transport in agree-
ment with the proposed westerly wind-meditated
teleconnection between the Mediterranean Sea
and Greenland during these cold intervals [5,44].
The higher intensity of the north Hemisphere
wind system during the Stadials is also docu-
mented by dust records in Greenland [45], loess
deposits in the Chinese Plateau and salinity oscil-
lations in the south China Sea [46,47]. In addition
to these stronger winds the climatic conditions
over the Mediterranean region may also have fa-
vored higher water evaporation assisting WMDW
formation. Evidence of increased evaporation is
obtained from pollen records from the Laghi di
Monticchio (south Italy) showing the occurrence
of more arid conditions during the Stadials and
especially HE than during the Interstadials [48].
Climatic conditions over the eastern Mediterra-
nean Sea could also help the formation of
WMDW by the production of a denser LIW dur-
ing these cold intervals.

The differences observed between the two ter-
restrial biomarkers can be evaluated by examina-
tion of the n-hexacosanol/(n-nonacosane+n-hexa-
cosanol) index. This alcohol index (Fig. 4d)
evolves in parallel with the SST record (r=0.75,
P <0.005) displaying low and high values during
Stadials and Interstadials, respectively. Changes
in vegetation type have been reported to be asso-
ciated with chain length of the homologous bio-
marker distributions [49,50] whereas the relative
content in n-alkan-1-ol vs. n-alkanes seems to be
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more related to sedimentary conditions since the
former are more labile to degradation processes
than the latter. Thus, organic matter degradation
decreases n-alcohol abundance in relation to n-
alkanes lowering the alcohol index. Recently, n-
alcohol vs. n-alkane rate changes have been inter-
preted to record organic matter degradation rates
in the water column [51-53]. However, alcohol
indices were found to differ between sapropelic
and non-sapropelic layers of the eastern Mediter-
ranean being interpreted to relate to eolian-fluvial
transport [54].

Further insight into the significance of this al-
cohol index in the Alboran Sea can be obtained
by comparison with the 8'*C record. As sampling
resolution between the two curves is very differ-
ent, the resolution of the index has been lowered
to that of 8'*C (Fig. 4e). Both curves evolve in
parallel (r=0.74, P <0.005) suggesting a common
forcing mechanism in agreement with degradation
rate oscillations of the organic matter driven by
deep water ventilation conditions. n-Hexacosanol
preservation was drastically affected by ventila-
tion changes while the n-nonacosane profile keeps
better the original signal of terrestrial input.

A polar circulation index (PCI) was calculated
by examination of sea salt and dust series from
GISP2 core [55]. The time evolution of this PCI is
interpreted to reflect the combined intensity and
overall size of the circulation system that produ-
ces the well-mixed background atmosphere over
Greenland. Comparison of PCI and alcohol indi-
ces (Fig. 4) shows a good inverse correlation
(r=0.75, P<0.005) which is again consistent
with the north Hemisphere wind system as the
major factor controlling deep water ventilation
and preservation of the organic matter in the
western Mediterranean Sea.

Downcore concentrations of TOC and Cs; al-
kenones are usually interpreted as a paleoproduc-
tivity signal [12-14]. Nevertheless, they can be
also strongly affected by degradation processes
in the water column and sediment [56]. Both Cs;

alkenones and TOC (Fig. 2c,d) in core MD 95-
2043 show the same pattern as the alcohol index
(correlation index r=0.76 and r=0.66 (P <0.005
in both cases) for the C;; alkenones and TOC,
respectively). This parallelism is in agreement
with the dominance of a preservation signal for
these two records in the deep Alboran Sea. Never-
theless, it cannot be excluded that increased phy-
toplanktonic activity during the D-O Interstadials
may also contribute to the higher TOC and alke-
none values recorded during these periods. Addi-
tional proxies, not affected by changes in deep
water ventilation, are necessary for further assess-
ment on possible changes in biological activity.

5.2. Implications for the Mediterranean
thermohaline circulation variability

The results of core MD 95-2043 document an
enhanced Mediterranean thermohaline circulation
during both the HE and the rest of D-O Stadials
in comparison to the warm intervals (Fig. 5). This
scenario is opposite to that described for the
north Atlantic Ocean, where both benthic §'*C
and foraminiferal assemblage records indicate a
reduced deep water ventilation during the cold
D-O intervals [57-59]. A more intense Mediterra-
nean deep water overturning must be concurrent
with increased water exchange through the Gi-
braltar Strait, implying the reinforcement of the
dense Mediterranean water outflow towards the
Atlantic Ocean.

Present day MOW spreads westwards, deepen-
ing into the Atlantic Ocean until it becomes neu-
trally buoyant at intermediate depths (800-
1300 m) [60,61]. The MOW forms a salt tongue
along the coast of Portugal, extending as far as
the Bermuda rise [61]. Since MOW is one of the
salt-contributing members to the north Atlantic
deep water (NADW) it has been postulated that
it may significantly influence Atlantic overturning
[61,62]. However, despite the important effect of
MOW in the salt budget of the Atlantic, simula-

«—

Fig. 4. MD 95-2043 age profiles of: (a) Ug-SST; (b) n-nonacosane; (c) n-hexacosanol; (d) alcohol index: n-hexacosanol/(n-hexa-
cosanol+n-nonacosane); (e) 8'°C Cibicidoides spp. (thick line) and alcohol index (thin line) with the same sampling resolution as
the 8'3C Cibicidoides spp. curve; (f) polar circulation index (PCI) in GISP2 ice core [55].
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tions with a circulation model indicate that it has
little effect on the global ocean thermohaline cir-
culation [63]. In any case, given the opposite sit-
uations regarding deep water formation in the
Atlantic and Mediterranean during glacial times,
it could be hypothesized that MOW had a stron-
ger role during cold intervals, when MOW was
enhanced and the Atlantic thermohaline circula-
tion was drastically reduced.

Positive benthic §'*C anomalies associated with
last glacial maximum (LGM) intermediate waters
have been found in the Gulf of Cadiz, north-west-
ern African margin [64], along the Portuguese
continental slope, in the Gulf of Gascogne [65]
and in the Caribbean Sea [66]. Therefore, it was
postulated that the glacial MOW was more im-
portant in the intermediate Atlantic than it is to-

day [64]. Nevertheless, this view is controversial
since MOW volume had to be reduced during the
glacial sea level drop (~ 120 m) [29,65,67]. Fur-
thermore, sediment records and simulations with
an ocean circulation-biogeochemical model sug-
gest that the north Atlantic still remained an im-
portant source of intermediate water during the
LGM [68,69]. The LGM high §'3C values in the
Caribbean Sea and Iberian margin have also been
associated with a well-ventilated and nutrient-de-
pleted glacial north Atlantic intermediate water
[70]. Close comparison of our benthic 8!*C record
in the Alboran Sea (Fig. 2d) with core SO75-
26KL in the Portuguese margin [70] shows clearly
opposite trends during H2 and H4. This supports
the hypothesis of a strong reduction of Atlantic
intermediate water ventilation during HE without
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significant influence from the well-ventilated
MOW [70].

6. Conclusions

Sedimentary profiles from both terrestrial and
marine biomarkers, TOC and benthic isotopes in
the Alboran Sea were modulated by a D-O-type
variability between 20-50 kyr BP. The benthic
830 and 8'3C records document the occurrence
of a denser and better ventilated deep water mass
during the HE and D-O Stadials than during the
warm D-O Interstadials. This is also illustrated
by the n-hexadecanol/n-nonadecane index, reflect-
ing that in conditions of well-ventilated deep
water (cold intervals) organic matter degradation
processes were enhanced. In consequence, TOC
and Cj; alkenones are also modulated by these
changes in preservation conditions although the
influence of enhanced primary productivity during
the warm intervals cannot be completely ruled
out.

This denser water mass likely resulted from en-
hanced thermohaline circulation in the north-
western Mediterranean Sea by the intensification
of north-westerlies which today constitute the ma-
jor driving force for deep water formation in this
area (Fig. 5). Increased wind transport occurring
synchronously with deep water formation can
also be inferred from the n-nonacosane record.
This association is also consistent with the high
correlation between our profiles reflecting deep
water ventilation proxies and the PCI in Green-
land, an indicator of the atmospheric conditions
at higher latitudes (Fig. 4).
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