Organic geochemistry and paleoenvironmental reconstruction

Hypersaline pond, Sicily

Jörn Peckmann

AG Geologie im Erdsystem Institut für Geologie

Universität Hamburg

SaltGiant Short Course 1 Modern and ancient oceans Salamaca, November 25

Organic geochemistry and paleoenvironmental reconstruction

- (1) Lipid biomarkers an introduction
- (2) Biomarker proxies for paleoenvironment reconstruction
- (3) Deeper-water sections of the Tertiary Piedmont Basin
- (4) Primary gypsum with filamentous microfossils
- (5) Calcare di Base, Sicily and Calabria

Lipid biomarkers – an introduction

Archaeal lipids

2,6,10,15,19,23-hexamethylhexacos-2,6,10,14,18,22-hexaene (squalene)

GDGT = glycerol dialkyl (dibiphytanyl) glycerol tetraether

Biomarker proxies for paleoenvironment reconstruction

Sediments: 82% of carbon are fived as carbonate, only 18% are C_{org}

! approx. 0.01% of carbon fixed in primary production enters the geological carbon cycle !

The fate of organic matter

Pristane/phytane ratios as an indicator of redox conditions

pristane/phytane ratios of >1 indicate oxic conditions during sedimentation (at the sediment/water interface), whilst values of <1 reflect anoxic conditions

Terrestrial/aquatic ratios (TAR)

TAR for hydrocarbons: $(n-C_{27} + n-C_{29} + n-C_{31}) / (n-C_{15} + n-C_{17} + n-C_{19})$

TAR for fatty acids: $(n-C_{24} + n-C_{26} + n-C_{28}) / (n-C_{12} + n-C_{14} + n-C_{16})$

Bourbonniere and Meyers 1996

Carbon Preference Index (CPI)

$$CPI = 0.5 \times \left(\frac{C_{25} + C_{27} + C_{29} + C_{31} + C_{33}}{C_{24} + C_{26} + C_{28} + C_{30} + C_{32}} + \frac{C_{25} + C_{27} + C_{29} + C_{31} + C_{33}}{C_{26} + C_{28} + C_{30} + C_{32} + C_{34}} \right)$$

Bray and Evans 1961

Represents the predominance of odd over even *n*-alkanes \rightarrow measure of the freshness of terrestrial organic matter

Average Chain Length index (ACL index)

$ACL = \frac{25 \times C_{25} + 27 \times C_{27} + 29 \times C_{29} + 31 \times C_{31} + 33 \times C_{33}}{C_{25} + C_{27} + C_{29} + C_{31} + C_{33}}$

Poynter and Eglinton 1990

traces changes in the sources of higher plant-derived *n*-alkanes; C_3 plants tend to produce shorter *n*-alkane chains

Archaeol Caldarchaeol Ecometric (ACE)

ACE = [archaeol / (archaeol + caldarchaeol)] x 100

Caldarchaeol = GDGT-0

Salinity = (ACE + 9.7) / 0.38

Turich and Freemann 2011

Branched Isoprenoid Tetraether (BIT) index

BIT = (I + II + III) / (I + II + III + crenarchaeol)

I, II, and III refer to the branched GDGTs with m/z 1022, 1036, and 1050

Hopmans et al. 2004

based on the relative abundance of terrigenous branched non-isoprenoidal

tetraethers versus marine-derived crenarchaeol

Deeper-water sections of the Tertiary Piedmont Basin

The Pollenzo section

Natalicchio et al. 2019

An archive of environmental change in the absence of evaporites

Natalicchio et al. 2017

A precession-paced succession

A precession-paced succession

Conclusions – Piedmont basin

- 1. Archaea dominated in the water column and sediments after the onset of the Messinian salinity crisis
- Shales deposited during humid phases and precession minima (insolation maxima), whereas marls deposited during arid phases and precession maxima (insolation minima)
- 3. Humic phases were typified by high input of degraded terrestrial organic matter driven by enhanced riverine runoff, promoting water column stratification

Primary gypsum with filamentous microfossils

Gypsum with filamentous microfossils from the Piedmont Basin

Dela Pierre et al. 2015

Polysulfide: a clade-diagnostic criterion for sulfide-oxidizing bacteria

Dela Pierre et al. 2015

Natalicchio et al. in prep.

Location	Mineralogy revealed by XRD	additional mineral phases revealed by SEM/EDS	
Nijar	gypsum, traces of dolomite	celestine	
Monte Tondo	gypsum, traces of dolomite	celestine	
Monticino	gypsum	celestine, dolomite, calcite	
Crete	gypsum, traces of bassanite	celestine	
Cyprus	gypsum	celestine	

Echoes of Life – Gaines et al. 2009

Lipid biomarker inventory

	Nijar	Monte Tondo	Monticino	Crete	Cyprus
<i>n</i> -C ₁₇ / <i>n</i> -C ₁₈ hydrocarbon ratio	0.7	0.8	0.7	0.8	0.9
Pristane / Phytane ratio	0.7	1.0	0.9	7.3	0.8
TAR _{FA} 1)	0.26	0.50	0.12	0.42	0.43
ACE ²⁾	93	88	80	98	92
Salinity (‰) ³⁾	281	267	243	296	279

Natalicchio et al. in prep.

¹ terrestrial/aquatic ratio based on carboxylic acids, TAR_{FA} = $(n-C_{24}+n-C_{26}+n-C_{28})/(n-C_{14}+n-C_{16})$

² Archaeol Caldarchaeol Ecometric, ACE = (archaeol/(archaeol+caldarchaeol)) *100, <1 = <25 psu, <10 = <50 psu, >40 = >75 psu ³ calculated after ACE salinity correlation

Conclusions – Filamentous microfossils

- 1. The biomarker patterns do not allow an unambiguous taxonomic assignment of the filametous microfossils
- 2. No biomarkers of cyanobacteria have been observed, although the overall preservation of lipids is good
- The occurrence of polysulfide and pyrite, the diameter of filaments, and the lack of biomarkers of cyanobacteria and algae indicate that the filamentous fossils are colorless sulfide-oxidizing bacteria

Calcare di Base

Biomarker inventory of Calcare di Base from Sicily and Calabria

Birgel et al. 2014

Cropalati Serra Pirciata A Image: Cropalati image: Cro

- m micrite = microcrystalline calcite
- Ce celestine

Isoprenoid alcohols

Hypersaline conditions revealed by molecular fossils

extended archaeol

phytanyl monoether

non-isoprenoidal macrocyclic glycerol diether

Proportions of isoprenoid alcohols

HPLC-APCI-MS base peak chromatogram

Predominance of archaeol (IV) over GDGT-0 (VI)

Conclusions – Calcare di Base

- **1.** The Calcare di Base formed in hypersaline environments
- 2. The biomarker inventory is dominated by archaeal lipids; apart from halophilic archaea another group of archaea dwelled in the paleoenvironment, possibly methanogens or members of the Thermoplasmatales

Messinian geomicrobiology team – past and presence

Giovanni Aloisi Stefano Bernasconi Daniel Birgel **Benjamin Brunner** Antonio Caruso Francesco Dela Pierre Susanne Gier Adriano Guido Kai-Uwe Hinrichs Amanda Labrado Marcello Natalicchio **Catherine** Pierre Jean-Marie Rouchy Simon Rouwendaal Mathia Sabino Dave Stolwijk Athina Tzevahirtzian Simone Ziegenbalg

Funding

Deutsche Forschungsgemeinschaft European Commission – Marie Slodowska-Curie Landesgraduierten Hamburg European Commission – COST action CA15103 MedSalt European Commission – ETN SALTGIANT

The Messinian Endeavor

