

Planktonic foraminifers

Modern and ancient oceans, SaltGiant Short Course 1 Salamanca November 25th – 29th 2019

Francesca Bulian

We will talk about . . .

Foraminifers:

• What? Where? How?

What kind of ocean-climate information can be extracted from fossil foraminifera remains?

Where do we find foraminifera proxies and how do we get to them?

Available analytical methods?

Ocean division of marine life

Copyright @ 2009 Pearson Education, Inc.

Plankton

Plankton has a crucial place at the base of aquatic food chains.

The types of plankton highly sensitive to environmental conditions.

Foraminifera

Single-celled heterotrophic <u>protists</u> part of the **eukaryotic domain**.

Tests are composed of secreted calcium carbonate (CaCO3).

They **eat** unicellular algae, especially diatoms, other protozoans and small metazoans (crustaceans such as copepods).

Living foraminifers

- Uni-cellular organism
- The cytoplasm contains typical eukaryotic cellular organelles: RIBOSOMES, FOOD VACUOLES, MITOCHONDRIA...
- Outside the cytoplasm in stretched into strands-RHIZOPODIA-are used to collect food particles and transport them to the APERTURE

Haynes, 1981

Basic soft part morphology

Foraminifera test

Reproduction

Kucera, 2007; Kimoto, 2015

Sexual reproduction

- The cytoplasm is divided into hundreds of thousands of biflagellate isogametes;
- 2. To maximize the chances of the gametes from different individuals to find each other, the reproduction is synchronized in space and time;
- 3. Most shallow water species appear to reproduce in pace with the lunar cycle or half cycle;
- 4. Following gamete fusion, shell growth is facilitated by the sequential addition of chambers, gradually increasing the dimensions of the shell.

Molphology-based classification

- Trochospiral
- Planispiral
- Streptospiral
- Biserial
- Globular
- Triserial
- Multiserial

TYPE OF CHAMBER ARRANGMENT

Evolute Planispiral

Globular

Biserial

Multiserial

Loeblic and Tappan, 1964

Chambers

Molphology-based classification

- Umbelical
- Extraumbelical
- Equatorial
- Spiroumbelical
- Dorsal apertures
- Intralaminal
- Relict apertures
- With phialine lip
- With umbelical teeth
- With umbelical bulla

APERTURE

Umbilical Aperture

Extraumbilical-umbilical Aperture

Equatorial Aperture

Spiroumbilical Aperture

Relict Apertures

Apertures

Areal Supplementary

Single Sutural Supplementary Apertures

Intralaminal Accessory Apertures

Infralaminal Accessory Apertures

Loeblic and Tappan, 1964

Foraminifers as proxies

- 5 main components of the climate system and they all interact with each other on different time scales;
- OCEANS: <u>largest reservoir</u> of heat derived from solar insolation
 - Surface ocean in direct contact with the Sun's energy is of particular importance for understanding the climate system.

Planktonic foraminifers as proxies

The mineralized shells of foraminifera preserve a record of the ocean's chemical and physical properties that can be utilized for evolutionary, paleobiological, and geochemical analyses of global environmental change.

High preservation in the deep-sea sedimentary record.

Carbonate sediments rich in the calcitic shells of foraminifera are abundant in both space and time, which allows their use in different time scales.

https://www.whoi.edu/science/AOPE/dept/CBLASTmain.html

Application of planktonic forams as proxies

- 1. Paleotemperature
- 2. Paleoproductivity
- 4. Physical properties
- 5. Biostratigraphy

Geochemical-based

- 1. Oxygen isotopic composition (δ 180)
- 2. Nutrient availability: Carbon isotopic
 - composition (δ 13C)
- Continental weathering and oceanic circulation: Nd isotopic composition (εNd)
- 4. Paleotemperature: Mg/Ca ratio
- 5. Meltwater: Ba/Ca ratio
- 6. Paleoproductivity: Cd/Ca
- 7. pH: boron isotopic composition (δ 11B)

Census data (assemblages)

Counts of taxa, ecological or functional types

Presence/absence

Semi-quantitative abundance estimates Absolute abundances Relative abundances

Determination foraminiferal assemblage:

- Counting of 300-500 specimen in random sub samples of >0.150 mm fraction
- It relies on <u>correct identification</u> of the

counted taxonomical units

Temperature estimates

Five main assemblages of Planktonic foraminifera

Kucera, 2007

Productivity in the Surface ocean

The production of organic matter by phytoplankton: **photoautotrophs** - harvesting light to convert inorganic to organic carbon, and they supply this organic carbon to diverse **heterotrophs**, organisms that obtain their energy solely from the respiration of organic matter (oxidation of organic carbon back to carbon dioxide).

Biostratigraphy

How do we know the age of a foraminiferal event?

- Previously established age on other sections:
- Chemiostratigraphy: isotope geochemistry of marine carbonates (Foraminifers);
- 2. Cyclostratigraphy: search other cyclical patterns (Gamma ray, Sonic Log, Resistivity)
- **3.** Event Stratigraphy: anoxic events, ice ages, large vulcanic events (tefra leyers) are additional tie points;
- **4.** Radioisotopic dating: U-Pb, 40Ar/39Ar;
- 5. Magnetostratigraphy: sequence of geomagnetic field polarity;

Ochoa et al., 2018

Reasons of uncertanty in Biostratigraphy

Gradstain, 2012

All organisms are affected during growth by the state of their physical environment.

Biometry	Measurements made on individual specimens					
	Morphology — size, shape Shell ultrastructure Colour and weight					
Modification	Changes to fossils incurred after deposition					
	Preservation indices					
	Fragmentation					

Kennett (1976) and Hecht (1976)

Kucera, 2007

Darling et al., 2006

Kucera, 2007

All organisms are affected during growth by the state of their physical environment.

Biometry	Measurements made on individual specimens					
	Morphology — size, shape Shell ultrastructure Colour and weight					
Modification	Changes to fossils incurred after deposition					
	Preservation indices Fragmentation					

All organisms environment.

Increasing intensity of calcite dissolution

tion

Important in order to estimate the Calcite dissolution, when using geochemical proxies from shells.

Kucera, 2007

Mg/Ca and Sr/Ca ratios in planktonic foraminifera:

Proxies for upper water column temperature reconstruction

Caroline Cléroux,¹ Elsa Cortijo,¹ Pallavi Anand,² Laurent Labeyrie,¹ Franck Bassinot,¹ Nicolas Caillon,¹ and Jean-Claude Duplessy¹

Received 29 May 2007; revised 10 April 2008; accepted 20 May 2008; published 27 August 2008.

The effects of temperature, salinity, and the carbonate system on Mg/Ca in *Globigerinoides ruber* (white): A global sediment trap calibration

William R. Gray^{a,*,1}, Syee Weldeab^a, David W. Lea^a, Yair Rosenthal^b, Nicolas Gruber^c, Barbara Donner^d, Gerhard Fischer^d

Nonthermal Influences on Mg/Ca in Planktonic Foraminifera: A Review of Culture Studies and Application to the Last Glacial Maximum

William R. Gray^{1,2} 厄 and David Evans³ 厄

Mg/Ca ratio - Paleotemperature

https://foramsetal.wordpress.com/research/mgca-paleothermometry/

Mg/Ca ratio - Paleotemperature

- Fundamental to robust SST reconstruction is accurate knowledge of the relationship between foraminiferal Mg/Ca and temperature.
- Use of regression equation to calculate foraminifera Mg/Ca ratio dependency on calcification temperature:

$$Mg/Ca = B \exp(A \times T)$$

Planktonic foraminiferal Cd/Ca:

Paleonutrients or Paleotemperature?

R. E. M. Rickaby and H. Elderfield

Department of Earth Sciences, University of Cambridge, Cambridge, England, United Kingdom

On the nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean: Could chronic iron limitation of phytoplankton growth cause the kink?

Jay T. Cullen¹ University of Victoria, School of Earth and Ocean Sciences, P.O. Box 3055 STN CSC, Victoria, British Columbia V8W 3P6, Canada

Cd/Ca ratio - Paleoproductivity

Nonlinear relationship between dissolved cadmium and phosphate in the modern global ocean.

- Cd is a micronutrient.
- Cd is partitioned into planktonic foraminiferal calcite in direct proportion to the Cd concentration of surface water
 - then planktonic Cd/Ca offers great potential as an alternative tracer of surface water paleoproductivity.

Cullen et al., 2006

pH: boron isotopic composition ($\delta^{11}B$)

- Carbonates forming in marine environments incorporate trace amounts of boron into their structures during growth through incorporation of the charged borate B(OH)₄⁻.
- Theoretical model of carbonate δ¹¹B assumes that measurement of the isotopic composition of boron trapped in ancient carbonate shells, give the boron isotopic composition of only borate, could conceivably be used to estimate the pH of ancient seawater.

 $\delta 11Bcarb = \delta 11Bborate$

Mortyn and Martinez-Botí, 2007

pH: boron isotopic composition ($\delta^{11}B$)

Since the pH of seawater is directly related to atmospheric pCO₂

 $\delta^{11}\text{B}$ measured in foraminiferal tests have been used to derive pH values and consequently pCO2

Nd isotopic composition (ENd)

foraminifera Fe-Mn-oxide coatings

• The variability of εNd can be used to infer past changes in both continental weathering processes and oceanic circulation.

Tachikawa et al., 2017

ForCenS coretop database

160°W 120°W 80°W 40°W 0° 40°E 80°E 120°E 160°E

• Additions • MARGO • ATL947 • BUFD • CLIMAP

Figure 1. Location of all census counts retained in the ForCenS compilation. Colours denote the sample source, the first occurrence of a sample in a compilation taking precedence over reuse in later compilations.

SCIENTIFIC DATA

OPEN Data Descriptor: ForCenS, a curated database of planktonic foraminifera census counts in marine surface sediment samples

.

Received: 31 March 2017 Accepted: 20 June 2017

Published: 22 August 2017

Michael Siccha & Michal Kucera

SP.	MAX.	MIN.
Globigerinoides_ruber	80.9 %	0.4 %
Neogloboquadrina_incompta	71.6 %	0.0 %
Globoconella_inflata	54.2 %	0.0 %
Globigerina_bulloides	53.9 %	1.7 %
Globorotalia_truncatulinoides	36.3 %	0.0 %
Orbulina_universa	19.8 %	0.0 %
Neogloboquadrina_dutertrei	18.7 %	0.0 %
Trilobatus_Saculifer	17.2 %	0.0 %
Globigerinella_calida	13.5 %	0.0 %
Globigerinita_glutinata	12.4 %	0.0 %
Globigerina_falconensis	11.1 %	0.0 %
Globigerinella_siphonifera	11.1 %	0.0 %
Turborotalita_quinqueloba	9.1 %	0.0 %
Globoturborotalita_rubescens	8.8 %	0.0 %
Globorotalia_scitula	6.0 %	0.0 %
Globigerinoides_tenellus	4.0 %	0.0 %
Beella_digitata	4.0 %	0.0 %
Neogloboquadrina_pachyderma	1.4 %	0.0 %

SP.	MAX.	MIN.
Globigerinoides_ruber	80.9 %	0.4 %
Neogloboquadrina_incompta	71.6 %	0.0 %
Globoconella_inflata	54.2 %	0.0 %
Globigerina_bulloides	53.9 %	1.7 %

Globigerina bulloides

Globigerinoides_ruber

World Ocean Atlas 1998 Figures (WOA98F) Temperature, Salinity, Oxygen, Nutrients, Chlorophyll Objectively Analyzed Fields and Statistics Ocean Climate Laboratory National Oceanographic Data Center

Version 1.0 April, 1999

Neogloboquadrina_incompta

Globoconella inflata

<u>Globigerina</u> bulloides

BASIC IDEA OF QUANTITATIVE ENVIRONMENTAL RECONSTRUCTION

The modern relationships between Y and X are modelled statically and the resulting function is the used as a transfer function to transform the fossil data Y_0 into quantitative estimates of the past environmental variable X_0 .

-MAT / RAM -WA -ARTIFICIAL NEURAL NETWORKS

Quaternary Science Reviews 24 (2005) 951-998

QSR

Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans

Michal Kucera^{a,*}, Mara Weinelt^b, Thorsten Kiefer^c, Uwe Pflaumann^b, Angela Hayes^{a,d}, Martin Weinelt^e, Min-Te Chen^f, Alan C. Mix^g, Timothy T. Barrows^h, Elsa Cortijoⁱ, Josette Duprat^j, Steve Juggins^k, Claire Waelbroeckⁱ

Table 2 Overview of the MARGO planktonic foraminifer data sets with prediction errors for individual regions

Calibration data set			Root Mean Square Error of Prediction (°C)					LGM data set		
Region	Source	Samples	Remarks	SST	ANN	RAM	SIMMAX	MAT	Cores	Samples
North Atlantic	1	862		Summer	1.14	1.09	0.91	1.42	102	550
				Winter	0.96	0.79	0.86	1.32		
				Annual	0.96	0.85	0.81	1.26		
South Atlantic	1	321	83 tropical samples in common	Summer	0.81	0.76	0.98	1.36	69	198
			with North Atlantic	Winter	0.95	0.96	0.98	1.47		
				Annual	0.83	0.62	0.93	1.36		
Pacific	1	1111	Some core tops common to	Summer	1.19	0.78	1.00	1.63	82	265
			IndoPacific data set 13 LGM cores	Winter	1.64	1.17	1.27	1.88		
			common to IndoPacific data set	Annual	1.35	0.93	1.10	1.67		
Mediterranean	2	274	Includes 129 samples from North	Summer	1.14	0.74			37	273
			Atlantic	Winter	0.79	0.47				
				Annual	0.91	0.54				
Indian Ocean and	3	1344	Some core tops common to Pacific	Summer	0.93	0.91		0.89	170	301
Australia			data set 13 LGM cores common to	Winter	1.01	0.98		0.98		
(IndoPacific)			Pacific data set	Annual	0.86	0.86		0.84		
Total									460	1574

(1) This paper; (2) Hayes et al. (2004); (3) Barrows and Juggins (2004). The error rates have been determined by cross validation of the calibration data sets using ten independent partitions (ANN and MAT and RAM for Indian Ocean and Australia) and the leaving-one-out method (SIMMAX, RAM, MAT). MAT values for North and South Atlantic and Pacific data sets refer to error rates for SIMMAX without distance weighting. Note that the leaving-one-out procedure in RAM02 software, used for all regions except the Indian Ocean and Australia, underestimates the error rate as the samples are "left out" after the two-dimensional interpolation procedure.]

Messinian SST?

Messi) an SST?

BASIC IDEA OF QUANTITATIVE ENVIRONMENTAL RECONSTRUCTION

The modern relationships between Y and X are modelled statically and the resulting function is the used as a transfer function to transform the fossil data Y_0 into quantitative estimates of the past environmental variable X_0 .

BASIC IDEA OF QUANTITATIVE ENVIRONMENTAL RECONSTRUCTION

Qualitative reconstruction based on assemblages: Tropical / Subtropical / Transitional / Subpolar / Polar

Just SST?

Monthly SST

66.86 % variability of PF assemblages

66.86 % variability of PF assemblages

Monthly SST/[Chl]/TG

81.02 % (14.16 %)

Thank you for the attention!