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ABSTRACT: The purity and morphology of the copper surface is important for the synthesis of high-quality, large-grained
graphene by chemical vapor deposition. We find that atomically smooth copper foilsfabricated by physical vapor deposition and
subsequent electroplating of copper on silicon wafer templatesexhibit strongly reduced surface roughness after the annealing of
the copper catalyst, and correspondingly lower nucleation and defect density of the graphene film, when compared to commercial
cold-rolled copper foils. The “ultrafoils”ultraflat foilsfacilitate easier dry pickup and encapsulation of graphene by hexagonal
boron nitride, which we believe is due to the lower roughness of the catalyst surface promoting a conformal interface and subsequent
stronger van der Waals adhesion between graphene and hexagonal boron nitride.

■ INTRODUCTION

Reliable fabrication of high-quality graphene is of utmost
importance for its commercial use in electronics, photonics,
sensors, and other application areas. The most widespread,
scalable, and efficient method for single-layer graphene
production is chemical vapor deposition (CVD) on copper
(Cu) foils.1 Commercially available cold-rolled copper foils
tend to be rough on the microscale and may be surface-
contaminated.2 This can make the density of nucleation sites
and the overall quality of graphene difficult to control, even for
copper foils of nominally high purity,3 which may contain
other contaminants. The effect of surface impurities on
nucleation density and CVD growth quality, as well as the
methodologies to prevent or remove detrimental contami-
nation-related effects, has been discussed extensively in the
literature.4−10

In order to grow high-quality CVD graphene, copper
pretreatments such as surface chemical etching or electro-
polishing11 are combined with extended annealing in a
reducing atmosphere to increase the catalyst grain size and
reduce the graphene nucleation density. Growth recipes also

have to be tuned specifically to suppress nucleation on such
substrates.12,13 Several studies13,14 have shown how catalyst
templatingthe deposition of catalyst on an atomically flat
surface such as a silicon wafercan reduce the smoothness
and increase the purity of the catalyst film. Yu et al.13 showed
improved graphene grain size and superior electrical properties
over graphene from commercial copper foils, as measured in
devices equipped with a liquid top-gate. This elegant approach
combined the deposition of a thin (50 nm) layer of Cu onto a
sapphire wafer, followed by electroplating of up to 25 μm
copper. Mechanically peeling the copper layer off the substrate
produces a bottom copper surface that inherits the smoothness
and monocrystalline 111 orientation of the sapphire template,
leading to an epitaxial growth of monocrystalline graphene.
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The method has been taken up and developed further by a
number of studies,15−25 most of which, however, involve the
authors on the two original articles.13,14 Considering the
simplicity and attractive features of the “peel-off” or template
method, the adoption by the research field is relatively low. We
believe that deterministic growth is necessary for the
maturation of high-level scalable applications, and determin-
istic growth substrates (crystallinity, purity, and morphology)
could be key elements in achieving the ultimate consistency
and quality needed for demanding future applications.
Here, we examine the peeling-off approach using standard

silicon (Si) wafers as a template, colloquially terming the foils
herein produced as “ultrafoils”. We show ultralow postanneal-
ing surface roughness of the copper ultrafoils and find that
nucleation density, catalyst grain size, graphene grain size, and
defect density are consistently superior compared to graphene
from commercial copper foils despite using identical growth
conditions. We also show that the dry pickup technique
demonstrated with CVD graphene26 is not only possible but
also far easier with ultrafoil-derived graphene as compared to
commercial foils.

■ MATERIALS AND METHODS

Foil Preparation. The steps in the fabrication process are
illustrated in Figure 1a. The ultrafoil substrates were fabricated
using a combination of a 1.5 μm thick high-purity (99.999%)
copper film evaporated on a pristine 4″ Si wafer using an
Alcatel electron beam (e-beam) evaporation deposition
system.

Electroplating. This step was followed by a 10 μm thick
low-stress copper film deposited by electroplating. The
electrolyte consisted of very pure diluted sulfuric acid, copper
sulfate, and a small amount of sodium chloride.27 The
deposition was performed in a 25 L tank at room temperature
and with air agitation. To ensure low internal stress and
relatively small crystal size of the deposited copper, pulse
reversal plating was applied with alternating periods of 500 ms
with copper dissolution (following the scheme called 4T2).20

During the electroplating step, the sealing of the edges of the
first copper layer is crucial to prevent the delamination of the
e-beam-deposited initial copper layer and the Si wafer. The
bilayer copper film is easily peeled off with a pair of tweezers
after a rinse in water and drying with nitrogen. As a reference,
Alpha Aesar 25 μm (99.8%) uncoated copper foil was used.

Synthesis. Graphene was grown by low-pressure CVD (5
mbar) in an Aixtron Black Magic cold wall CVD system. After

Figure 1. (a) Illustration of the ultrafoil fabrication process steps: e-beam evaporation, electroplating, delamination, and finally annealing of copper.
(b) EBSD image of the ultrafoil sample after annealing. The full image is shown in Figure S1. (c,d) Ultrafoil substrates before and after annealing.
The panel indicators (i), (ii), and (iii) show optical bright-field, dark-field (DF), and AFM images of the representative areas of each sample. (e,f)
Commercial foils before and after annealing. The scale bars are 5 μm.
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15 min of annealing of the copper substrate in hydrogen (1000
sccm)/argon (700 sccm) at 1040 °C, growth was initiated by
adding 1 sccm methane flow and maintained for various
durations. The sample is then cooled under Ar flow by turning
off the heaters. Detachment of graphene from the copper films
was done by first letting copper oxidize in air, which took
typically 1 day for commercial foils compared to 30 days for
ultrafoils.
Transmission Electron Microscopy. Graphene grown on

ultrafoils was transferred onto Quantifoil holey carbon grids by
following the method described in ref 28. TEM was carried out
in a FEI Tecnai T20 G2 system operated at 200 kV with a
Gatan US1000 CCD camera. In DF transmission electron
microscopy (DF-TEM), an objective aperture placed in the
back focal plane is used to select certain reflections of the
crystalline sample. By tilting the electron beam, reflections with
different reciprocal lattice vectors are centered within the
objective aperture. These diffracted beams contribute to the
DF image, and crystalline areas that cause these beams appear
bright in the DF image. The procedure is described in ref 29. A
Thermo Fisher DXR Raman microscope equipped with a 532
nm laser source is used to acquire Raman spectra from the two
graphene samples transferred to the SiO2/Si substrate (900
points per sample; step size, 1 μm).
Electron Backscatter Diffraction. Electron backscatter

diffraction (EBSD) images were acquired using a FEI Nova
600 NanoSEM system with a Bruker EBSD detector. Data
were collected with a 10 μm step size. During EBSD collection,
the probe current was 3.9 nA, the accelerating voltage was 15
kV, and the angle of incidence was 70°. Scanning electron
microscopy (SEM) images were recorded in a Zeiss Supra
40VP instrument operated in in-lens detection mode at 5 keV.
Atomic force microscopy (AFM) images were recorded in a
Bruker Dimension Icon-PT instrument.

■ RESULTS

As well documented in the literature, the catalyst grain size
distribution is important for consistent, high-quality growth,
with larger grains promoting epitaxial growth and reducing
defect rates.30,31 After annealing, EBSD revealed that the
ultrafoil substrates display copper grain sizes in the 0.1−2 mm
size range (Figure 1b). Figure 1c,d shows the copper foil
before and after annealing. The optical microscope images in
both normal (i) and DF (ii) modes are featureless, while AFM
images show roughly 0.8 nm rms roughness before annealing.
After annealing, the ultrafoil maintains a smooth surface
(Figure 1d) with an rms of ∼1.2 nm and clearly visible metal
grain boundaries in optical microscopy [see (i) and (ii)]. The
commercial foils exhibited an rms roughness of ∼96 nm before
growth, which decreased to ∼68 nm after growth, with clear
signs of step-bunching32 [see Figure 1f, panel (ii)] and particle
precipitation seen as point-like protrusions in the AFM image.
Figure 2 shows two stages of graphene partial growth (10

and 30 min) on an ultrafoil (Figure 2a,b) and a commercial foil
(Figure 2e,f) under identical growth conditions. Lower
nucleation density on the ultrafoil leads to well-separated
hexagonal graphene flakes even for relatively long growth times
of up to 30 min and enables monocrystalline graphene regions
2 orders of magnitude larger than that on commercial foils
before the graphene domains coalesce (see Figure 2a,e).
The graphene grain size distribution was investigated by

TEM and selective area electron diffraction (SAED)
analyses.29 Graphene grown on ultrafoils and transferred to
Quantifoil amorphous carbon support films exhibited
diffraction patterns such as that shown in Figure 2c, showing
the investigated area to be single crystals. Figure S2 shows that
this is the case across the hexagonal domain and that the edges
are zigzag-oriented. In contrast, the polycrystalline structure of
graphene grown on commercial foils is apparent from the
diffraction pattern shown in Figure 2g, with several
monocrystalline graphene diffraction patterns rotated and

Figure 2. (a,b) SEM micrographs of the ultrafoil surface after 10 and 30 min graphene growth. (c) SAED diffraction spots show that the graphene
flakes are single crystals. (d) Graphene flake covering a window in a TEM chip. (e,f) Commercial copper after 10 and 30 min graphene growth. (g)
SAED image of a commercial foil with each ring, 1−9, being centered on selected diffraction spots, and (h) is the reconstructed grain structure
based on nine such DF images.
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superimposed. Following the procedure in ref 29, the
individual grains within the freestanding graphene area are
reconstructed from several SAED images (see Figure 2h). The
defect density of the grown graphene films on the two different
substrates was investigated by Raman spectroscopy across 30 ×
30 μm areas (see Figure S3). Statistics of 900 spectra for each
type of substrate shows a vanishing D-peak with the average
Raman peak intensity ratio I(D)/I(G) = 0.064, while the
corresponding value for the commercial foil was I(D)/I/(G) =
0.38.
To encapsulate the graphene films in hexagonal boron

nitride (hBN), we follow the procedure described in ref 33
(see Figure 3a−f). First, 20−50 nm thick hBN flakes are

mechanically exfoliated on oxidized Si surfaces,34,35 which are
subsequently picked up with PDMS/PPC films, following the
procedure in ref 36. With this procedure, we fabricated five
devices from ultrafoil-grown graphene. In comparison, we were
not able to fully pick up the graphene flakes grown on
commercial copper foils; these crystals were either partly
transferred or not at all (not shown). In both cases, the copper
foils were oxidized before attempting the pickup. It should be
stressed that different preparation techniques could lead to a
higher success rate also for graphene grown on commercial
foils, as previously demonstrated here by Banszerus et al.26

After pickup, hBN/graphene is then released onto another
hBN flake, cleaved onto SiO2, to fully encapsulate graphene
without contact with water, solvents, or polymers.37,38 After
defining the device region by lithography and plasma etching,
graphene is contacted with Cr/Pd/Au via the resulting exposed
1D edge.38 Figure 3f shows the conductance versus gate
voltage for such a device, where a voltage corresponding to a

background doping of 2.6 × 1012 cm−2 has been subtracted.
The field effect mobility μ = C−1(dG/dVg)(L/W) for the
device is around 12,000 cm2/V s for both electrons and holes.
C is the capacitance per area, while W and L are the device
width and voltage probe distance, respectively.

■ DISCUSSION
The production of copper foils through a combined physical
vapor deposition and electrodeposition process, and using
silicon as a template, enables the fabrication of copper catalyst
layers with a very low surface roughness after annealing, even
when compared to previous work.13,14 The presence of
particles and contaminants in commercial foils can have a
serious impact on the graphene growth dynamics,3,39 as
impurity particles generally increase the catalytic reactivity of
the copper surface, increasing the number of nucleation points
during growth.
While a room-temperature carrier mobility of around 104

cm2/V s for hBN-encapsulated devices cannot be considered
exceptionally high, we note that dry pickup from of graphene
flakes from the nanometer-smooth catalyst surface is not only
possible but also significantly easier than that with a
commercial foil, which suggests that the surface morphology
of copper plays an important role in nondestructive transfer.
We speculate that this could be due to the conformal contact
with hBN, facilitated by the nanometer-smooth copper surface.
The dimensions of the catalyst layer possible with this
technique are limited only by the size of the templating
wafer used.
One striking characteristic of the ultrafoil films is the

absence of visible features outside the flakes, while inside the
flakes, the step-bunches are nearly periodically spaced. We see
this as an indicative of a very uniform interface compared to
what is achieved by common surface treatments including
electropolishing surfaces. An elegant in situ SEM study by
Wang et al.40 shows the evolution of surface transformations
below CVD-grown graphene, leading to pronounced step-
bunching appearing under the flakes during the cooling
process. The step-bunching in our flakes is, however, far
more uniform in appearance, which we attribute to the flatness
and absence of features on our catalytic surfaces.
The process of oxidizing copper is a prerequisite for dry

pickup, and one drawback of the ultrafoil is the longer
oxidation time. Ambient air surface oxidation of the copper foil
underneath the graphene progresses via a defined set of stages:
(1) intercalation of water between graphene and copper, (2)
oxidation of the copper surface to form Cu2O, and (3)
passivation of the copper surface against further oxidation by
the Cu2O passivating layer. In this case, the oxide thickness
and roughness do not progress further with ambient oxidation
after the formation of this passivating oxide layer. Therefore,
while ultrafoils require a longer time to fully oxidize [owing to
a slower step (1)], any modifications to the resulting surface
roughness are equally represented in both foilsgiven the self-
passivating nature and thickness of the oxide−−and thus can
be considered as accounted for (see ref 41). Also, Zhang et al.
found that the surface roughness did not increase during
oxidation under the CVD graphene film from 10 to 60 min.42

An intriguing aspect of the “peeling off” process is that the
combination of the electroplating/PVD processes allows a
wide variety of metals to be turned into pure, high-quality,
atomically smooth foils, which facilitates the growth of
graphene and other 2D materials with much reduced intrinsic

Figure 3. (a,f) Schematic of the device fabrication procedure, where
(a) hBN crystal is dropped down on a hexagonal graphene domain
using a PDMS/PPC stack. (b) Removal of copper was done by dry
pickup from copper or alternatively by etching of copper in FeCl3. (c)
hBN−graphene stack is then deposited on a second hBN layer to
complete the encapsulation (e). (f) Hall bar is defined by RIE etching
and contacted by Cr/Au. The inset shows a SEM micrograph of a
device fabricated by dry pickup. The scale bar is 2 μm. (h) Sheet
conductance (green curve) and carrier mobility (dashed curve) versus
gate voltage.
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nucleation density. Furthermore, flat and defect-free foils
appear to facilitate the otherwise challenging dry pickup of
graphene crystals from copper foils.26 This is not at all obvious:
the adhesion of graphene to copper foils is a complicated issue,
depending on the catalyst crystal orientation, grain size, and
oxidation of copper below graphene;43 however, we find the
ultrafoil approach a highly promising route to reduce the
number of free parameters in the complex process of dry
lamination and thereby an important step toward determin-
istic, large-scale van der Waals heterostructures.
Future work should benchmark the ultrafoils against a

broader range of catalyst foils, such as other metals and alloys,
as well as other deposition methods and surface treatments44

such as chemical etching, physical polishing,45 electropolish-
ing,11,46−48 annealing,30 and resolidification.49 It would also be
interesting to compare our high-end e-beam evaporation/
electroplated copper foils with commercial electroplated foils
to see if the latter, cheaper solution could generate high-quality
growth results as well, despite the template having a rougher
substrate. We also note that the commercial and electroplated
foils compared in this work were of different thicknesses (25
and 10 μm, respectively). While we find it unlikely that the
thickness difference could account for the striking difference in
the results for commercial and templated foils, a study of the
thickness dependence on the performance of ultrafoils would
nevertheless be relevant to carry out.
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